The robust quasi-likelihood (RQL) proposed by Cantoni & Ronchetti (2001) is a robust version of quasi-likelihood. They adopted Huber function to increase the resistance of the RQL estimator to the outliers. They considered the Huber function only of symmetric type. We extend the class of Huber function to include asymmetric types, and derived a method to find the optimal asymmetric one.
Communications for Statistical Applications and Methods
/
제15권4호
/
pp.543-549
/
2008
Inspired by using a robust loss function in the support vector machine regression to control training error and the idea of robust template matching with M-estimator, Chen (2004) applies M-estimator techniques to gaussian radial basis functions and form a new class of robust kernels for the support vector machines. We are specially interested in the shape of the Huber's M-estimator in this context and propose a way to find the shape parameter of the Huber's M-estimating function. For simplicity, only the two-class classification problem is considered.
Journal of the Korean Data and Information Science Society
/
제11권2호
/
pp.181-188
/
2000
The shape of an M-estimation function is generally determined in the sense of either/both maximizing efficiency of an M-estimator at the model or/and bounding the influence function of an M-estimator. We propose an empirical method of choosing a value of the bending constant in Huber's ${\psi}-function$, which is the most widely used M-estimation function when estimating the location parameter.
Communications for Statistical Applications and Methods
/
제31권3호
/
pp.291-308
/
2024
The current article discusses ratio type exponential estimators for estimating the mean of a finite population in sample surveys. The estimators uses robust regression's Huber M-estimation function, and their bias as well as mean squared error expressions are derived. It was campared with Kadilar, Candan, and Cingi (Hacet J Math Stat, 36, 181-188, 2007) estimators. The circumstances under which the suggested estimators perform better than competing estimators are discussed. Five different population datasets with a well recognized outlier have been widely used in numerical and simulation-based research. These thorough studies seek to provide strong proof to back up our claims by carefully assessing and validating the theoretical results reported in our study. The estimators that have been proposed are intended to significantly improve both the efficiency and accuracy of estimating the mean of a finite population. As a result, the results that are obtained from statistical analyses will be more reliable and precise.
Huber의 M-추정함수의 형태는 조율상수가 주어질 때 비로소 그 형태가 결정된다. 조율상수를 커널밀도함수추정량의 평활계수를 이용하여 구하여 보았고, 모의실험을 통해 기존에 상요되는 조율상수들과 그 성능을 비교하여 보았다. 그 결과 새로운 방법에 의해 구해진 조율상수가 기존의 조율상수를 사용하는 경우 보다 모의실험을 통해 얻은 추정치의 분산이 작게되는 경우가 있음을 알았다.
In this paper, a novel line-based simultaneous localization and mapping (SLAM) using a loss function of vanishing point measurements is proposed. In general, the Huber norm is used as a loss function for point and line features in feature-based SLAM. The proposed loss function of vanishing point measurements is based on the unit sphere model. Because the point and line feature measurements define the reprojection error in the image plane as a residual, linear loss functions such as the Huber norm is used. However, the typical loss functions are not suitable for vanishing point measurements with unbounded problems. To tackle this problem, we propose a loss function for vanishing point measurements. The proposed loss function is based on unit sphere model. Finally, we prove the validity of the loss function for vanishing point through experiments on a public dataset.
1984년 처음 SR 알고리즘이 제안된 이후, 많은 SR 복원 알고리즘이 제안되었다 SR의 접근방법 중에서도 공간적 접근방법은 저해상도 이미지의 픽셀 값을 고해상도 이미지 격자에 매핑 함으로써 이루어진다. 이때, 저해상도 이미지들 간의 각각 다른 노이즈와 다른 PSF(Point Spread Function) 함수, 왜곡으로 인해 매핑 시 문제가 된다. 때문에 저해상도 이미지들의 노이즈 성분을 최소화하는 방법이 필요하다. 본 논문에서는 노이즈 성분을 최소화하는 방법으로 L1 norm의 방법을 사용하고 이와 동시에 이미지의 경계를 보완해주는 Huber norm을 사용하는 SR의 구조를 제안한다. 실험에서는 타 알고리즘과의 비교를 통해 제안한 알고리즘이 저해상도 이미지 상에 존재하는 노이즈를 줄이고 이미지 경계부분의 보완을 확인하였다.
For seismic imaging and inversion, the inverted image depends on how we define the objective function. ${\ell}^1$-norm is more robust than ${\ell}^2$-norm. However, it is difficult to apply the Newton-type algorithm directly because the partial derivative for ${\ell^1$-norm has a singularity. In our paper, to overcome the difficulties of singularities, Huber function given by hybrid ${\ell}^1/{\ell}^2$-norm is used. We tested the robustness of our new object function with several noisy data set. Numerical results show that the new objective function is more robust to band limited spiky noise than the conventional object function.
It is necessary to check the curvature of selected covariates in regression diagnostics. There are various graphical methods using residual plots based on least squares fitting. The sensitivity of LS fitting to outliers can distort their residuals, making the identification of the unknown function difficult to impossible. In this paper, we compare combining conditional expectation and residual plots(CERES Plots) between least square fit and robust fits using Huber M-estimator. Robust CERES will be far less distorted than their LS counterparts in the presence of outliers and hence, will be more useful in identifying the unknown function.
In this study, we investigate the effects of the weight function in the bounded influence regression quantile (BIRQ) estimator for the AR(1) model with additive outliers. In order to down-weight the outliers of X-axis, the Mallows' (1973) weight function has been commonly used in the BIRQ estimator. However, in our Monte Carlo study, the BIRQ estimator using the Tukey's bisquare weight function shows less MSE and bias than that of using the Mallows' weight function or Huber's weight function.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.