• Title/Summary/Keyword: Hub Location Problem

Search Result 14, Processing Time 0.023 seconds

Extended Hub-and-spoke Transportation Network Design using a Symbiotic Evolutionary Algorithm (공생 진화알고리듬을 이용한 확장된 hub-and-spoke 수송네트워크 설계)

  • Shin Kyoung-Seok;Kim Yeo-Keun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.2
    • /
    • pp.141-155
    • /
    • 2006
  • In this paper, we address an extended hub-and-spoke transportation network design problem (EHSNP). In the existing hub location problems, the location and number of spokes, and shipments on spokes are given as input data. These may, however, be viewed as the variables according to the areas which they cover. Also, the vehicle routing in each spoke needs to be considered to estimate the network cost more correctly. The EHSNP is a problem of finding the location of hubs and spokes, and pickup/delivery routes from each spoke, while minimizing the total related transportation cost in the network. The EHSNP is an integrated problem that consists of several interrelated sub-problems. To solve EHSNP, we present an approach based on a symbiotic evolutionary algorithm (symbiotic EA), which are known as an efficient tool to solve complex integrated optimization problems. First, we propose a framework of symbiotic EA for EHSNP and its genetic elements suitable for each sub-problem. To analyze the proposed algorithm, the extensive experiments are performed with various test-bed problems. The results show that the proposed algorithm is promising in solving the EHSNP.

Algorithm for the ATM Switching Node Location Problem (ATM 교환기의 위치 선정 문제에 관한 연구)

  • 김덕성;이경식;박성수;박경철
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.24 no.3
    • /
    • pp.93-107
    • /
    • 1999
  • We consider the development of an integer programming model and algorithm for the ATM switching node location problem. There are two kinds of facilities, hub facilities and remote facilities, with different capacities and installation costs. Each customer needs to be connected to one or more hub facilities via remote facilities, where the hub(remote) facilities need to be installed at the same candidate installation site of hub(remote) facility. We are given a set of customers with each demand requirements, a set of candidate installation sites of facilities, and connection costs between facilities, We need to determine the locations to place facilities, the number of facilities for each selected location, the set of customers who are connected to each installed hub facilities via installed remote facilities with minimum costs, while satisfying demand requirements of each customer. We formulate this problem as a general integer programming problem and solve it to optimality. In this paper, we develop a branch-and-cut algorithm with path variables. In the algorithm, we consider the integer knapsack polytope and derive valid inequalities. Computational experiments show that the algorithm works well in the real world situation. The results of this research can be used to develop optimization algorithms to solve capacitated facility location problems.

  • PDF

A Design of Capacitated Hub-and-Spoke Networks with Direct Shipment: Evolutionary Algorithm based Approach (용량제한과 직접수송이 있는 Hub-and-Spoke 네트워크 설계: 진화알고리듬 기반의 접근법에 의해)

  • Lee, Hyun Soo;Shin, Kyoung Seok;Kim, Yeo Keun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.4
    • /
    • pp.303-315
    • /
    • 2005
  • In this paper we address a design problem for hub-and-spoke networks and then consider a capacitated hub locations problem with direct shipment (CHLPwD). We determine the location of hubs, the allocation of nodes to hubs, and direct shipment paths in the network, with the objective of minimizing the total cost in the network. In this paper, CHLPwD is formulated as 0-1 integer programming. We develop an evolutionary algorithm here to solve the large sized CHLPwD. To do this, we present the representation and the genetic operators suitable for the problem and propose a heuristic method for the allocation of nodes to hubs. To enhance the search capability, problem-specific information is used in our evolutionary algorithm. The proposed algorithm is compared with the heuristic method in terms of solution quality and computation time. The experimental results show that our algorithm can provide better solutions than the heuristic.

A Branch-and-price Approach to the ATM Switching Node Location Problem

  • Kim, Deokseong;Park, Sunsoo;Lee, Kyungsik;Park, Kyungchul
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.2
    • /
    • pp.92-99
    • /
    • 2004
  • We consider the ATM switching node location problem (ANLP). In this problem, there are two kinds of facilities, hub facilities and remote facilities, with different capacities and installation costs. We are given a set of customers with each demand requirements, a set of candidate installation sites of facilities, and connection costs between facilities. We need to determine the locations to place facilities, the number of facilities for each selected location, the set of customers who are connected to each installed hub via installed remote facilities with minimum cost, while satisfying demand requirements of each customer. We formulate this problem as a general integer programming problem and solve it to optimality. In this paper, we present a preprocessing procedure to tighten the formulation and develop a branch-and-price algorithm. In the algorithm, we consider the integer knapsack problem as the column generation problem. Computational experiments show that the algorithm gives optimal solutions in a reasonable time.

A design for hub-and-spoke transportation networks using an evolutionary algorithm (진화알고리듬을 이용한 hub-anb-spoke 수송네트워크 설계)

  • Lee, Hyeon-Su;Sin, Gyeong-Seok;Kim, Yeo-Geun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.59-71
    • /
    • 2005
  • In this paper we address a design problem for hub and spoke transportation networks and then consider a capacitated hub locations problem with direct shipment (CHLPwD). We determine the location of hubs, the allocation of nodes to hubs, and direct shipment paths in the network, with the objective of minimizing the total cost in the network. An evolutionary algorithm is developed here to solve the CHLPwD. To do this, we propose the representation and the genetic operators suitable for the problem and adopt a heuristic method for the allocation of nodes to hubs. To enhance the search capability, problem-specific information is used in our evolutionary algorithm. The proposed algorithm is compared with the heuristic method in terms of solution quality and computation time. The experimental results show that our algorithm can provide better solutions than the heuristic.

  • PDF

A dual based heuristic for the hub location and network design problem with single assignment constraint (단일연결 제약하의 설비입지를 고려한 망설계 문제의 쌍대기반 해법)

  • 윤문길
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.25 no.1
    • /
    • pp.67-84
    • /
    • 2000
  • In this paper, we address a network design problem including the decision of hub facility locatiions which is typically found in a communicatio and a transportation network design studies. Due to the administrative and the geographical restrictions, it is common to assume that each user should be assigned to only one hub facility. To construct such a network, three types of network costs should be considered: the fixed costs of establishing the hubs and the arcs in the network, and the variable costs associated with transversing the network. The complex problem is formulated as a mixed IP embedding a multicommodity flow problem. Exploiting its special structure, a dual-based heuristic is then developed, which yields near-optimal design plans. The test results indicate that the heuristic is an effective way to solve this computationally complex problem.

  • PDF

Development of a Simulator for the Intermediate Storage Hub Selection Modeling and Visualization of Carbon Dioxide Transport Using a Pipeline (파이프라인을 이용한 이산화탄소 수송에서 중간 저장 허브 선정 모델링 및 시각화를 위한 시뮬레이터 개발)

  • Lee, Ji-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.12
    • /
    • pp.373-382
    • /
    • 2016
  • Carbon dioxide Capture and Storage/Sequestration (CCS) technology has attracted attention as an ideal method for most carbon dioxide reduction needs. When the collected carbon dioxide is transported to storage via pipelines, the direct transport is made if the storage is close, otherwise it can also be transported via an intermediate storage hub. Determining the number and the location of the intermediate storage hubs is an important problem. A decision-making algorithm using a mathematical model for solving the problem requires considerably more variables and constraints to describe the multi-objective decision, but the computational complexity of the problem increases and it also does not guarantee the optimality. This research proposes an algorithm to determine the location and the number of the intermediate storage hub and develop a simulator for the connection network of the carbon dioxide emission site. The simulator also provides the course of transportation of the carbon dioxide. As a case study, this model is applied to Korea.

Development of a Single Allocation Hub Network Design Model with Transportation Economies of Scale (수송 규모의 경제 효과를 고려한 단일 할당 허브 네트워크 설계 모형의 개발)

  • Kim, Dong Kyu;Park, Chang Ho;Lee, Jin Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6D
    • /
    • pp.917-926
    • /
    • 2006
  • Transportation Economies of scale are the essential properties of hub networks. One critical property of the hub network design problem is to quantify cost savings which stem from economies of scale, the costs of operating hub facilities and opportunity costs associated with delays stemming from consolidation of traffic flows. Due to the NP-complete property of the hub location problem, however, most previous researchers have focused on the development of heuristic algorithms for approximate solutions. The purpose of this paper is to develop a hub network design model considering transportation economies of scale from the consolidation of traffic flows. The model is designed to consider the uniqueness of hub networks and to determine several cost components. The heuristic algorithms for the developed model are suggested and the results of the model are compared with recently published studies using real data. Results of the analysis show that the proposed model reflects transportation economies of scale due to consolidation of flows. This study can form not only the theoretical basis of an effective and rational hub network design but contribute to the assessment of existing and planned logistics systems.

A Cost Optimization Problem on a 2 Level Transportation Network (2단계 수송네트워크 상에서의 장기적 비용 최적화)

  • Jung, Jae-Heon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.3
    • /
    • pp.1-15
    • /
    • 2005
  • In our model, a fleet of vehicles start from docking point to collect loads at the terminals assigned to the point Then the docking points are connected to the hub by primary vehicle routes starting at the hub. This vehicle visit all the docking points to collect the loads which have been collected by the secondary vehicles. Our goal Is to minimize the long-run cost of setting up the docking Points and vehicle operation cost by deciding the location of the docking points and the routes optimally. We propose an heuristic algorithm to solve this and tested it though various experiments.