• Title/Summary/Keyword: Huang's model

Search Result 154, Processing Time 0.03 seconds

Position Control of Chained Multiple Mass-Spring-Damper Systems - Adaptive Output Feedback Control Approaches

  • S. S. Ge;L. Huang;Lee, T. H.
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.144-155
    • /
    • 2004
  • This paper addresses the issue of position control of a chain of multiple mass-spring-damper (CMMSD) units which can be found in many physical systems. The dynamic model of a CMMSD system with any degrees of freedom is expressed in a closed-form for the convenience of the controller design. Backstepping and model reference adaptive control (MRAC) approaches are then used to develop two adaptive output feedback controllers to control the position of a CMMSD system. The proposed controllers rely on the measurements of the input (force) and the output (position of the mass unit at the end of the chain) of the system without the knowledge of its parameters and internal states. Simulations are used to verify the effectiveness of the controllers

Theoretical explanation of rock splitting based on the micromechanical method

  • Huang, Houxu;Li, Jie;Hao, Yiqing;Dong, Xin
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.225-231
    • /
    • 2018
  • In this paper, in order to explain the splitting of cylindrical rock specimen under uniaxial loading, cracks in cylindrical rock specimen are divided into two kinds, the longitudinal crack and the slanting crack. Mechanical behavior of the rock is described by elastic-brittle-plastic model and splitting is assumed to suddenly occur when the uniaxial compressive strength is reached. Expression of the stresses induced by the longitudinal crack in direction perpendicular to the major axis of the crack is deduced by using the Maxwell model. Results show that the induced stress is tensile and can be greater than the tensile strength even before the uniaxial compressive strength is reached. By using the Inglis's formula and simplifying the cracks as slender ellipse, the above conclusions that drawn by using the Maxwell model are confirmed. Compared to shearing fracture, energy consumption of splitting seems to be less, and splitting is most likely to occur when the uniaxial loading is great and quick. Besides, explaining the rock core disking occurred under the fast axial unloading by using the Maxwell model may be helpful for understanding that rock core disking is fundamentally a tensile failure phenomenon.

SINR based Maximum Link Scheduling with Uniform Power in Wireless Sensor Networks

  • Huang, Baogui;Yu, Jiguo;Yu, Dongxiao;Ma, Chunmei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4050-4067
    • /
    • 2014
  • In wireless sensor networks, link scheduling is a fundamental problem related to throughput capacity and delay. For a given set of communication requests $L=\{l_1,l_2,{\cdots},l_n\}$, the MLS (maximum link scheduling) problem aims to find the largest possible subset S of Lsuch that the links in S can be scheduled simultaneously. Most of the existing results did not consider bidirectional transmission setting, which is more realistic in wireless sensor networks. In this paper, under physical interference model SINR (signal-to-noise-plus-interference-ratio) and bidirectional transmission model, we propose a constant factor approximation algorithm MLSA (Maximum Link Scheduling Algorithm) for MLS. It is proved that in the same topology setting the capacity under unidirectional transmission model is lager than that under bidirectional transmission model. However, compared with some work under unidirectional transmission model, the capacity of MLSA is improved about 28% to 45%.

A spiral variable section capillary model for piping hydraulic gradient of soils causing water/mud inrush in tunnels

  • Lin, P.;Li, S.C.;Xu, Z.H.;Li, L.P.;Huang, X.;He, S.J.;Chen, Z.W.;Wang, J.
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.947-961
    • /
    • 2017
  • An innovative spiral variable-section capillary model is established for piping critical hydraulic gradient of cohesion-less soils causing water/mud inrush in tunnels. The relationship between the actual winding seepage channel and grain-size distribution, porosity, and permeability is established in the model. Soils are classified into coarse particles and fine particles according to the grain-size distribution. The piping critical hydraulic gradient is obtained by analyzing starting modes of fine particles and solving corresponding moment equilibrium equations. Gravities, drag forces, uplift forces and frictions are analyzed in moment equilibrium equations. The influence of drag force and uplift force on incipient motion is generally expounded based on the mechanical analysis. Two cases are studied with the innovative capillary model. The critical hydraulic gradient of each kind of sandy gravels with a bimodal grain-size-distribution is obtained in case one, and results have a good agreement with previous experimental observations. The relationships between the content of fine particles and the critical hydraulic gradient of seepage failure are analyzed in case two, and the changing tendency of the critical hydraulic gradient is accordant with results of experiments.

A model-based adaptive control method for real-time hybrid simulation

  • Xizhan Ning;Wei Huang;Guoshan Xu;Zhen Wang;Lichang Zheng
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.437-454
    • /
    • 2023
  • Real-time hybrid simulation (RTHS), which has the advantages of a substructure pseudo-dynamic test, is widely used to investigate the rate-dependent mechanical response of structures under earthquake excitation. However, time delay in RTHS can cause inaccurate results and experimental instabilities. Thus, this study proposes a model-based adaptive control strategy using a Kalman filter (KF) to minimize the time delay and improve RTHS stability and accuracy. In this method, the adaptive control strategy consists of three parts-a feedforward controller based on the discrete inverse model of a servohydraulic actuator and physical specimen, a parameter estimator using the KF, and a feedback controller. The KF with the feedforward controller can significantly reduce the variable time delay due to its fast convergence and high sensitivity to the error between the desired displacement and the measured one. The feedback control can remedy the residual time delay and minimize the method's dependence on the inverse model, thereby improving the robustness of the proposed control method. The tracking performance and parametric studies are conducted using the benchmark problem in RTHS. The results reveal that better tracking performance can be obtained, and the KF's initial settings have limited influence on the proposed strategy. Virtual RTHSs are conducted with linear and nonlinear physical substructures, respectively, and the results indicate brilliant tracking performance and superb robustness of the proposed method.

Experimental Validation of Crack Growth Prognosis under Variable Amplitude Loads (변동진폭하중 하에서 균열성장 예측의 실험적 검증)

  • Leem, Sang-Hyuck;An, Dawn;Lim, Che-Kyu;Hwang, Woongki;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.267-275
    • /
    • 2012
  • In this study, crack growth in a center-cracked plate is predicted under mode I variable amplitude loading, and the result is validated by experiment. Huang's model is employed to describe crack growth with acceleration and retardation due to the variable loading effect. Experiment is conducted with Al6016-T6 plate, in which the load is applied, and crack length is measured periodically. Particle Filter algorithm, which is based on the Bayesian approach, is used to estimate model parameters from the experimental data, and predict the crack growth of the future in the probabilistic way. The prediction is validated by the run-to-failure results, from which it is observed that the method predicts well the unique behavior of crack retardation and the more data are used, the closer prediction we get to the actual run-to-failure data.

The Impact of Housing Price on the Performance of Listed Steel Companies Evidence in China

  • Huang, Shuai;Shin, Seung-Woo;Wang, Run-Dong
    • Asia-Pacific Journal of Business
    • /
    • v.11 no.2
    • /
    • pp.27-43
    • /
    • 2020
  • Purpose - This study explores the impact of the real estate industry on related industries for the perspective of Chinese steel companies. Design/methodology/approach - The impact of housing prices on the 41 listed steel companies' performance was analyzed by using the panel data model. We used two kinds of housing price indexes that are set in the panel data models to estimate the range of the real estate market, driving the performance growth of steel listed companies. Moreover, the net profit of steel companies is used as the dependent variable. To test the stability of the model, ROA used as a dependent variable for the robustness test. Also, to avoid the time trend of housing prices, this paper selects the growth rate of housing prices as the primary research variable. After Fisher-type testings, there is no unit root problem in both independent and dependent variables. Findings - The results indicated that the rise in the housing price has a positive influence on the steel company performance. When the housing price increases by 1%, the net profit of steel enterprises will increase by 5 to 20 million yuan. Research implications or Originality - In this paper, empirical data at the micro-level and panel model are used to quantify China's real estate industry's driving effect on the iron and steel industry, providing evidence from the microdata level. It helps us to understand further the status and role of China's real estate industry in the economic structure.

A Genetic Algorithm for Directed Graph-based Supply Network Planning in Memory Module Industry

  • Wang, Li-Chih;Cheng, Chen-Yang;Huang, Li-Pin
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.3
    • /
    • pp.227-241
    • /
    • 2010
  • A memory module industry's supply chain usually consists of multiple manufacturing sites and multiple distribution centers. In order to fulfill the variety of demands from downstream customers, production planners need not only to decide the order allocation among multiple manufacturing sites but also to consider memory module industrial characteristics and supply chain constraints, such as multiple material substitution relationships, capacity, and transportation lead time, fluctuation of component purchasing prices and available supply quantities of critical materials (e.g., DRAM, chip), based on human experience. In this research, a directed graph-based supply network planning (DGSNP) model is developed for memory module industry. In addition to multi-site order allocation, the DGSNP model explicitly considers production planning for each manufacturing site, and purchasing planning from each supplier. First, the research formulates the supply network's structure and constraints in a directed-graph form. Then, a proposed genetic algorithm (GA) solves the matrix form which is transformed from the directed-graph model. Finally, the final matrix, with a calculated maximum profit, can be transformed back to a directed-graph based supply network plan as a reference for planners. The results of the illustrative experiments show that the DGSNP model, compared to current memory module industry practices, determines a convincing supply network planning solution, as measured by total profit.

Effects of structural characteristics of screw conveyor on spewing during EPB shield tunnelling

  • Xiaochun Zhong;Siyuan Huang;Rongguo Huai;Yikang Hu;Xuquan Chen
    • Geomechanics and Engineering
    • /
    • v.35 no.6
    • /
    • pp.571-580
    • /
    • 2023
  • During EPB shield tunnelling, construction speed and safety are severely affected by spewing. In this study, a theoretical seepage model is established to capture of the effects of screw conveyor geometry and turbulent flow on spewing. Experimental test results are used to verify the proposed theoretical seepage model. It is found that the seepage is greatly affected by the length of screw conveyor and soil permeability. The proposed model can increase the screw conveyor length and reduce soil discharge sections simultaneously, the permeability of treated muck thus decreases by one order of magnitude. By using the proposed theoretical seepage model, the criterion of critical soil permeability used to identify spewing is proposed. When the water head applied at tunnel face reaches 40 m and 50 m, the critical permeability coefficients of treated muck should be less than 10-5 m/s and 10-6 m/s to avoid spewing. For a given permeability coefficient of soil, the water flow rate is overestimated if structural characteristics of screw conveyor is not considered. Consequently, the occurrence of spewing is greatly overestimated, which increases construction cost substantially.

Prediction model of surface subsidence for salt rock storage based on logistic function

  • Wang, Jun-Bao;Liu, Xin-Rong;Huang, Yao-Xian;Zhang, Xi-Cheng
    • Geomechanics and Engineering
    • /
    • v.9 no.1
    • /
    • pp.25-37
    • /
    • 2015
  • To predict the surface subsidence of salt rock storage, a new surface subsidence basin model is proposed based on the Logistic function from the phenomenological perspective. Analysis shows that the subsidence curve on the main section of the model is S-shaped, similar to that of the actual surface subsidence basin; the control parameter of the subsidence curve shape can be changed to allow for flexible adjustment of the curve shape. By using this model in combination with the MMF time function that reflects the single point subsidence-time relationship of the surface, a new dynamic prediction model of full section surface subsidence for salt rock storage is established, and the numerical simulation calculation results are used to verify the availability of the new model. The prediction results agree well with the numerical simulation results, and the model reflects the continued development of surface subsidence basin over time, which is expected to provide some insight into the prediction and visualization research on surface subsidence of salt rock storage.