• Title/Summary/Keyword: Hts Transformer

Search Result 123, Processing Time 0.039 seconds

Measurement of HTS Stacked Tapes Properties under Over-Current Condition in External Magnetic Field (외부자계 인가시 적층 고온초전도선재의 과전류 통전특성 측정)

  • Lee, K.Y.;Lim, H.W.;Lee, H.J.;Cha, G.S.;Lee, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.909-911
    • /
    • 2002
  • Rises of current level at power applications, such as transformer, motor, power cable need for using stacked HTS tapes. In this paper, we measured rises of temperature and tap voltage in 4-stacked HTS tapes under over-current condition. We measured 4-stacked HTS tapes properties under over-current condition with a little temperature rise as well as a large temperature rise. Rises of temperature and tap voltage are measured by using E-type thermocouples and voltage taps, respectively. According to the results of measurement, rises of tap voltage under over-current condition with a large temperature rises depends on rises of temperature.

  • PDF

A Study on Bubbling Control of Bi-2223/Ag HTS tapes (Bi-2223/Ag 고온초전도 선재의 bubbling 제어에 관한 연구)

  • 하홍수;오상수;하동우;송규정;김상철;권영길;류강식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.145-148
    • /
    • 2001
  • Bi-2223/Ag HTS tapes fabricated by PIT process are used to make the power transmission cable, motor, fault current limiter, transformer etc. But some problems are still remained as like bubbling, sausaging to got the high Jc. In this study. we carried out the experiment to prevent bubbling in the HTS tape. The bubbling mainly occurred when HTS tape was heat-treating. Therefore, additional vacuum annealing at 400 ~ $600^{\circ}C$and slowly ramp-up sintering method were used to decrease the bubbling. slowly ramp-up sintering was more effective to decrease the bubbling than the vacuum annealing, but Jc was also decreased after heat treatment. Optimum ramp-up sintering schedule was searched to get the high critical current and prevent bubbling at same time.

  • PDF

Total AC Loss by simultaneously applied AC transport current and AC external magnetic field in BSCCO Tape

  • Park Myungjin;Lim Hyoungwoo;Cha Gueesoo;Lee Jikwang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.4
    • /
    • pp.10-13
    • /
    • 2005
  • Transport current and magnetic field which is generated by transport current make AC current - AC mag-netic field condition(AC-AC condition) in AC power application system using HTS tape. Therefore, characteristics of AC loss under the AC-AC condition are necessary to estimate AC loss of power device with accuracy such as HTS transformer. In this paper, we researched transport current loss, magnetization loss by perpendicular magnetic field and total loss which is represented as summation of both losses under the AC-AC condition in single HTS tape. As a result, magnetization loss showed increasing behavior under 65mT and decreasing behavior upper 65mT by influence of transport current. Transport current loss was increased continuously through out whole measurement ranges in the AC-AC condition. Total loss in HTS tape was dominated entirely by magnetization loss.

Uniform Current Distribution among Conductor Layers in HTS Cables Using Inter-Phase Transformers (Inter-Phase Transformers를 이용한 고온 초전도 케이블의 층간 전류 등분배 방안)

  • 최용선;황시돌;현옥배;임성우;박인규
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.144-148
    • /
    • 2004
  • Uniform current distribution among conductor layers in HTS cables using IPTs (inter-phase transformers) was investigated. Conventional methods for current distribution, in which resistors are inserted to conductor layers, causes additional loss. In contrast, IPTs, which use magnetic coupling, make it possible that the current in parallel circuits is distributed uniformly with any load, and minimize the loss. In this study, IPTs were designed and fabricated for examination of uniform current distribution in the conductor layers of HTS cables. The ITP was designed through calculation of its impedance that can cancel the inductance of the conduction layers. The experimental setup consisted of four IPTs and four inductors that simulate the conductor layer inductance. Each layer was designed to feed 10 A. We examined the behavior of current distribution with IPTs for various layer inductances.

  • PDF

A basic study on protection system of superconductivity power system (대용량 초전도 신전력계통 보호방식 문제해결을 위한 기본연구)

  • Lee, Seung-Ryul;Kim, Jong-Yul;Yoon, Jae-Young;Lee, Byong-Jun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.16-20
    • /
    • 2007
  • This paper describes protection system of new distribution power system with superconducting power devices such as HTS cable, HTS transformer, HTS-FCL. First of all, this paper investigates protection systems of Korean power system and then do a basic study on relaying systems in the power system with HTS power devices. For the more detailed results, we did the study using EMTDC relaying system modeling from the viewpoint of superconducting power devices application. Then we proposed some solution for a high resistance fault problem.

Investigation on Effective Operational Temperature of HTS Cable System considering Critical Current and AC loss

  • Kim, Tae-Min;Yim, Seong-Woo;Sohn, Song-Ho;Lim, Ji-Hyun;Han, Sang-Chul;Ryu, Kyung-Woo;Yang, Hyung-Suk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.307-310
    • /
    • 2016
  • The operational cost for maintaining the superconductivity of high-temperature superconducting (HTS) cables needs to be reduced for feasible operation. It depends on factors such as AC loss and heat transfer from the outside. Effective operation requires design optimization and suitable operational conditions. Generally, it is known that critical currents increase and AC losses decrease as the operational temperature of liquid nitrogen ($LN_2$) is lowered. However, the cryo-cooler consumes more power to lower the temperature. To determine the effective operational temperature of the HTS cable while considering the critical current and AC loss, critical currents of the HTS cable conductor were measured under various temperature conditions using sub-cooled $LN_2$ by Stirling cryo-cooler. Next, AC losses were measured under the same conditions and their variations were analyzed. We used the results to select suitable operating conditions while considering the cryo-cooler's power consumption. We then recommended the effective operating temperature for the HTS cable system installed in an actual power grid in KEPCO's 154/22.9 kV transformer substation.

V-t Characteristics and Survival Probability of Turn-to-Turn Models for HTS Transformer (고온초전도 변압기를 위한 턴간 모델의 V-t 특성 및 생존 확률)

  • Baek, Seung-Myeong;Cheon, Hyeon-Gweon;Nguyen, Van-Dung;Seok, Bok-Yeol;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.356-362
    • /
    • 2004
  • Using multi wrapped copper by polyimide film for HTS transformer, the breakdown and V-t characteristics of two type models for turn-to-turn, one is point contact model, the other is surface contact model, were investigated under ac and impulse voltage at 77 K. A material that is Polyimide film (Kapton) 0.025 mm thickness is used for multi wrapping of the electrode. Statistical analysis of the results using Weibull distribution to examine the wrapping number effects on V-t characteristics under at voltage as well as breakdown voltage under ac and impulse voltage in $LN_2$ was carried. Also, survival analysis was performed according to the Kaplan-Meier method. The breakdown voltages for surface contact model are lower than that of the point contact model, because the contact area of surface contact model is wider than that of point contact model. At the same time, the shape parameter of the point contact model is a little bit larger than the of the surface contact model. The time to breakdown tn is decreased as the applied voltage is increased, and the lifetime indices slightly are increased as the number of layers is increased. According to the increasing applied voltage and decreasing wrapping number, the survival probability is increased.

  • PDF

The Characteristics Analysis of a HTS Transformer (고온초전도변압기의 특성해석)

  • Lee, Hee-Joon;Cha, Guee-Soo;Lee, Yong-Wook;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.247-249
    • /
    • 1999
  • This paper presents the design of a small scale High Tc superconducting power transformer. In the design of the transformer, BSCCO-2223 tape was considered as the conductor. Double pan cake winding was adopted in order to easy the construction of the winding and to lessen the leakage reactance of the transformer. Numerical calculation was used to decide the arrangement of the double pan cake winding. Estimation of the AC loss, magnetizing loss and self field loss, in the superconducting winding and the iron loss in the core were given.

  • PDF

A method for uniform current distribution of HTS cable using Inter-Phase Transformers (Inter-Phase Transformers를 이용한 고온초전도 케이블의 층간 전류 등분배 방안)

  • Choi, Yong-Sun;Yim, Seong-Woo;Sim, Jung-Wook;Hwang, Si-Dole;Park, In-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.973-975
    • /
    • 2003
  • Uniform current distribution among conductor layers in HTS cables using IPTS (inter-phase transformers) was proposed. Conventional methods for current distribution, in which resistors are inserted to conductor layers, causes additional loss. In contrast, IPTS, which use magnetic coupling, make it possible that the current in parallel circuits is distributed uniformly with any load, and minimize the loss. In this study, IPTS were designed and fabricated for examination of uniform current distribution in the conductor layers of HTS cables. The ITP was designed through calculation of its impedance that can cancel the inductance of the conduction layers.

  • PDF