• 제목/요약/키워드: Hovering Control

검색결과 110건 처리시간 0.022초

자유 비행체의 3자유도 자세제어에 관한 연구 (A Study on the 3-DOF Attitude Control of Free-Flying Vehicle)

  • 박덕기;박문수;김병두;정원재;조성민;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.92-92
    • /
    • 2000
  • Helicopter offer the signigicant advantage over traditional air vehicles, in that the provide extended maneuverability, such as vertical climb, hovering, longitudinal and lateral flight, hovering turns and bank turns. But helicopter have the strong cross couplings and nonlinearities for each lateral, longitudinal and rotational motion mutually. However, it is possible to ignore this couplings for the hovering condition, so using this properties we can control the attitude of helicopter. That is, by implementing the dynamic of each rotational axis(roll, pitch, yaw) of independent mutually, 3-DOF(degree of Freedom) attitude control for the helicopter is possible. In this paper, we identify decoupled input-coutput relations of each three rotational axis about the helicopter mounted on the 3-DOF gimbal by experiment, and on these basis implement 3-DOF attitude controller using the PID control method.

  • PDF

Development of a Hovering AUV for Underwater Explorations

  • Byun, Seung-Woo;Kim, Joon-Young
    • Journal of Ship and Ocean Technology
    • /
    • 제11권2호
    • /
    • pp.1-9
    • /
    • 2007
  • This paper describes the design and development of a hovering AUV constructed at Cheju National University and analyses the dynamic performance of the vehicle using simulation programs. The main purpose of this AUV is to carry out fundamental tests in its station keeping, attitude control, and desired position tracking. Its configuration is similar to the general ROV appearance for underwater works and its dimensions are 0.75m*0.5m*0.5m. It has 4 thrusters of 450 watts for longitudinal/lateral/vertical propulsion and is equipped with a pressure sensor for measuring water depth and a magnetic compass for measuring heading angle. The navigation of the vehicle is controlled by an on-board Pentium III-class computer, which runs with the help of the Windows XP operating system. These give us an appropriate environment for developing various algorithms needed for developing and advancing Hovering AUV.

SRFIMF를 이용한 멀티팬 부상기의 YAW제어에 관한 연구 (A Study on Yaw Control of Multi-Fan Hovering with SRFIMF)

  • 박선국;최부귀
    • 한국통신학회논문지
    • /
    • 제17권4호
    • /
    • pp.361-370
    • /
    • 1992
  • 수직 이착륙기와 같은 비행체의 정지비행 도중 비행체의 위치각, 각속도, 각가속도와 같은 상태량을 궤환 시킨 SRFIMF(State Rate Feedback Implicit Model-Following)이론을 이용하여 4개의 팬을 갖는 부상제어시스템을 구성하였다. 이 부상제어시스템의 yaw제어를 행하여, 각 상태궤환이득 및 전향경로 이득을 변화시켜 부상제어시스템의 특정을 해석하였으며, 부상시스템과 같은 제어계에 SRFIMF방식을 적용시켜 그 타당성을 조사하였다.

  • PDF

Fuzzy규칙을 사용한 무인헬리콥터 호버링 제어 (A Hovering Control of an Unmanned Helicopter Using Fuzzy Rules)

  • 채희성;전재춘;김봉수;김형석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.525-527
    • /
    • 1998
  • The fuzzy-based autonomous position control system for hovering of an unmanned helicopter has been developed. An unmanned helicopter Is flying vehicle which can aviate freely even at narrow or hazardous space. The bottleneck of the full utilization of the unmanned helicopter is mainly on the control difficulty caused from its nonlinear and unstable characteristics. This paper presents a Fuzzy control technique to have the unmanned helicopter perform hovering. Experimental results of real unmanned helicopter control are included.

  • PDF

쿼드로터 자세 안정화를 위한 센서융합 기반 3중 중첩 PID 제어기 (A Triple Nested PID Controller based on Sensor Fusion for Quadrotor Attitude Stabilization)

  • 조영완
    • 전기학회논문지
    • /
    • 제67권7호
    • /
    • pp.871-877
    • /
    • 2018
  • In this paper, we propose a triple nested PID control scheme for stable hovering of a quadrotor and propose a complementary filter based sensor fusion technique to improve the performance of attitude, altitude and velocity measurement. The triple nested controller has a structure in which a double nested attitude controller that has the angular velocity PD controller in inner loop and the angular PI controller in outer loop, is nested in a velocity control loop to enable stable hovering even in the case of disturbance. We also propose a sensor fusion technique by applying a complementary filter in order to reduce the noise and drift error included in the acceleration and gyro sensor and to measure the velocity by fusing image, gyro, and acceleration sensor. In order to verity the performance, we applied the proposed control and measurement scheme to hovering control of quadrotor.

수중운동체의 호버링시스템을 위한 외란 관측기 및 슬라이딩 모드 제어기 설계 (Design of disturbance observer and sliding mode controller for the hovering system of underwater vehicles)

  • 김종식;김성민;양화준
    • 제어로봇시스템학회논문지
    • /
    • 제3권1호
    • /
    • pp.40-45
    • /
    • 1997
  • A robust disturbance rejection controller for the hovering motion of underwater vehicles in near the surface of sea is presented. The suggested controller consists of two control parts, the one is disturbance observer for taking into account the effects of sea wave and missile-launching forces, and the other is sliding mode controller for the robust stability of underwater vehicles with model uncertainties and nonlinearities. It is shown that the sliding mode control system with disturbance observer is more effective compared with the sliding mode control system, especially in case that large sea wave force is affected.

  • PDF

Minimal Order LQG/LTR 기법에 의한 모형헬리콥터의 정지비행 자세제어 (Hovering Flight Control for a Model Helicopter using the Minimal-Order LQG/LTR Technique)

  • 양준선;한권희;이자성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.457-459
    • /
    • 1998
  • This paper presents a 3-DOF hovering flight controller for a model helicopter using the minimal order LQG/LTR technique. A model helicopter is an unstable multi-input multi-output nonlinear system strongly exposed to disturbances, so a robust multi-variable control theory should be applied to control it. The minimal order LQG/LTR technique which uses a reduced-order observer in the LTR procedure is used to design the controller. Performances for the 3-DOF hovering flight controller are evaluated through computer simulations.

  • PDF

수직부상기의 자세제어를 위한 강인한 제어기의 설계 (A robust controller design for attitude control of hovering vehicle)

  • 최연욱;이형기
    • 전자공학회논문지S
    • /
    • 제34S권12호
    • /
    • pp.41-49
    • /
    • 1997
  • This paper deals with the attitude control of a self-made VTOL vehicle which is round shape and has four fans and motors. Although hovering mechanisms are suitable for field work at a mountainous region or a building site etc., it is known that modeling the structure of the plant is quite difficult due to its unstable or uncertain characteristics. So, a robust controller is requried in order to cope with these uncertainties. WE first model the structure of the plant under the actual hovering setting and then determine the uncertainty of the acquired mathematical model by using system identification method as exactly as possible. We adopt the $H^{\infty}$ theory as a control algorithm because of its availability, and the structure of two-degree-of-freedom is used as a basic feedback control system to improve the transient response of the plant. Finally, we show the appropriateness of the designed controller through simulations and experiments. That is, the proposed VTOL system is able to maintain its roubust performance in spite of parameter variations and existing disturbances..

  • PDF

Hovering에서의 헬리콥터 자세제어를 위한 슬라이딩 모드 제어 (Sliding mode control for helicopter attitude regulation at hovering)

  • 임규만;함운철
    • 제어로봇시스템학회논문지
    • /
    • 제3권6호
    • /
    • pp.563-568
    • /
    • 1997
  • 본 논문에서는 약간의 가정하에 리모트 제어용 모형 헬리콥터의 동역학방정식을 유도하였으며, 이를 토대로하여 헬리콥터의 자세안정을 위한 제어 알고리듬을 제안하였다. 제어이론으로서는 파라메타의 변화및 외란에 강인한 가변구조 제어이론을 활용하였다. 본 제어 알고리듬에서는 헬리콥터의 위치이동 제어에 대하여서는 다루지를 못하였으며, 단지 헬리콥터의 hovering 상태에서의 자세 안정화에만 촛점을 두어 제어 알고리듬을 제안하였다. 컴퓨터 모사를 통하여, 제안된 제어 제어 알고리듬의 타당성을 보였으며, 약 2-3초의 시간이 경과된 이후 자세가 안정화 됨을 볼 수 있었다.

  • PDF

딥러닝을 이용한 쿼드콥터의 호버링 제어 (Quadcopter Hovering Control Using Deep Learning)

  • 최승욱
    • 한국산업융합학회 논문집
    • /
    • 제23권2_2호
    • /
    • pp.263-270
    • /
    • 2020
  • In this paper, In this paper, we describe the UAV system using image processing for autonomous quadcopters, where they can apply logistics, rescue work etc. we propose high-speed hovering height and posture control method based on state feedback control with CNN from camera because we can get image of the information only every 30ms. Finally, we show the advantages of proposed method by simulations and experiments.