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Sliding Mode Control for
Helicopter Attitude Regulation at Hovering
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I. Introduction

It has been well recognized that special efforts are
required and advanced control techniques are often
appropriate for control of large-scale, nonlinear, naturally
unstable and highly cross-coupled systems such as
helicopters. It is very difficult to control helicopter
because its dynamics are highly nonlinear with strongly
coupled modes. Many researchers have designed cont-
roller for helicopter flight. S. Ahmad {1], J. K. Pieper(2]
analyzed the dynamics of helicopter and designed
controller based on sliding motion control.

1. Postlethwaite, D. J. Walker[3] adopted H. robust
control theory for designing controller. M. Sugeno [4]
applied fuzzy control theory to design a controller. In this
paper, we derived simplified dynamic equations of electric
radio controlled model helicopter under the assumption
that we can neglected the speed of wind (helicopter)
compared with those of main rotor and tail rotor and
blade angles of main rotor and tail rotor deviated from
their equilibrium values are very small. We design the
robust controller based on the variable structure system
for the robustness to parameter variations and external
disturbances. In this first research step, we don’t
consider the translational motion of helicopter and
focus only on stabilization of attitude of helicopter.
Therefore, the proposed control scheme can be applied to
helicopter at hovering. Even though we don’t expect that
the behaviour of the model helicopter is merely a scaled
version of the behaviour of a full scale helicopter, a
robust control algorithm for stabilizing of model
helicopter may be applied to full scale helicopter. There
are two kinds of radio controlled model helicopters and
they have different mechanism for activating the rolling
and pitching motion of helicopter. In one mechanism,
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rolling and pitching motion is mainly achieved by
changing the lateral tilt angle and

longitudinal tilt angle of rotating plane of main rotor
with respective to x—3y plane of body attached
coordinate system by rolling and pitching command. In
the other mechanism, rolling and pitching motion is
mainly achieved by changing the lateral cyclic pitch
angle and longitudinal cyclic pitch angle of main rotor’'s
blade by rolling and pitching command. The model
helicopter considered in this paper is former type and it
is actuated by PWM servos, one each for lateral tilt
angle, logitudinal tilt angle of rotating plane of main
rotor, collective pitch angle of main rotor blade, collective
pitch angle of tail rotor blade, and engin throttle. Section
I and III of this paper, we derive the simplified dynamic
equations of model helicopter. In section IV, we
suggested a robust controller for stabilizing the attitude
of helicopter based on variable structure system. In
section V, we verify the validness of proposed controller
by computer simulation. Section VI contains the conclu-
sions.

II. Dynamics of Helicopter
In this section, we derive the simplified dynamics of
helicopter under the following assumptions.
® We neglect the speed of helicopter compared with the
speed of main rotor and tail rotor.( V=0 )
e The lift is proportional to pitch angle of main rotor
and tail rotor.

® The Pitch angle of main rotor and tail rotor is not
twisted.

® The moment of inertia J, and mass wm; helicopter
with respect to body attached coordinate system are
fixed. i

® Blade angles of main rotor and tail rotor deviated

from their equilibrium values are very small.
We set the relationship between the control command
and control action as follows.
® J(D : lateral tilt angle ( ¢f(H=g, D)
® (1) : logitudinal tilt angle ( (&) =g, p(§ )



® (X9 : angular velocity of main rotor( X8 = g, e(f))

® a,(9H: angle of attack of main rotor blade ( a;(H=
gae())

® a,(f): angle of attack of tail rotor blade (ay(#)=
8 ae(d) )

Therefore we have four control command inputs
D, (D, e(d, y(t) to control the motion of helicopter.
We set the world coordinate system and body attached
coordinate system as (x,, Vo, 2,) and (x,, v, 2,) respec-
tively and each coordinate system is shown in Fig. 1.
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Fig. 1. Coordinate sytems of helicopter.

Then we obtain the following equations concerning
dynamics of helicopter under the assumption that  ,(#)

is very small as follows,
Ty @D+ w,(DxJwd=], o (d=1uD (1
my D)= F,(D) 2)
where w,(f) and (8 are angular velocity and total

torque of helicopter with respect to body attached
coordinate system respectively and p,($ and f,(8 are
position of helicopter’'s center of gravity and total
force with respect to world coordinate system
respectively. In general, f,(# consists of three forces,
ie, fmm oOccuring from main rotor, f,, occuring from

tail rotor and gravitational force, as follows,

fulD= oD+ (O + £, (3)
where

Fomro(D= YR{8) fmr(D (4)

Firn(= "Ry fep(B) (5)

fe=my g, (6)

“R,(Dis rotational matrix of body attached coordinate
system with respect to world coordinate system and
fmrs and  f,, are forces generated by main rotor and
tail rotor, respectively, and are expressed with respect to
body attached coordinate system. Total torque z,(#
consists of two components, i.e. 7r,,; occuring from main
rotor and r,; occuring from tail rotor as follows, and
they are expressed with respect to body attached
coordinate system.

(0= T (Dt () (7N

Now we analyze each component of forces and torques
in the next section.

M. Analysis of forces and torques
For the analysis of forces and torques of helicopter,
we set the coordinate system for the rotating plane of
main rotor as (X ., ¥ mm2m) and call it as main rotor
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coordinate system and this coordinate system is gene-
rated by a rotation of ¢(#) about a, followed by a
rotation of @(# about a, . The location of main rotor
and tail rotor with respect to body attached system are
shown in figure 2. The forces and torque derived in this
section are based on the momentum theory and blade
element theory [6].

yby.r

Fig. 2. Coordinate systems of helicopter’'s body.

A. Analysis of forces

From the assumptions, the differential lift force df,..
of differential surface of main rotor rdrdé shown in
Fig. 2 can be approximated as

df e (D=—8 p AD*a () Pdrdd a,,. 8
where g4, is proportional coefficient of main rotor. So

total force of main rotor f,,(#) with respect to the main
rotor coordinate system can be expressed as

4
fur (0= [ A== XD (DT 2 (O

where 7, is the radius of main rotor. From figure

2, we can see that the rotational matrix between main
rotor coordinate system (X .Y mn2m) and body atta-

ched coordinate system (x,, v, 2, can be derived as
follow as

cos@( 0 sinf(d
”Rm,(t)=[ 0 1 0

1 0 0
[0 cos{H — sin(H| (10)
—siné(®) 0 cos8(d

0 sing{f) cos¢(?)

Therefore

Furs(D= "Rl ®) fr(D) (11)
In the similar method, we can derive the lift force of tail
rotor fu(H as follows

4

fon(D=—g4 QD (D5 ay (12)
where 7, is the radius of tail rotor. If we consider all
the components of forces derived above and gravitational
force, we can derive the following translational dynamics.
éxw
Dy
p 2w

mp =my g

0
0 } (13)

+ “RfD°R (D frr(D+ Fru(D]
1s the rotational matrix between body

where “R,(?)
attached coordinate system (x;,3¥s, 25) and world coor-
dinate system (X, Yu, Z4).
B. Analysis of torque

We can derive the torque of tail rotor with respect to
body attached coordinate system as follows,
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Top(=—1 apux fr(t) (14

4
=g, 1 AD2axd) ”;2 a,

where operator x means the cross product of two
vectors. Now we derive the torque of main rotor. At first
we derive the position of point p on the rotating plane
of main rotor with respect to body attached coordinate
system by using Homogeneous coordinate system [5].
The generalized coordinate p, of point p can be
expressed as follows.

100 017100 —¢€|| cosé 0 sind 0
by = 010 0((010 0 0 1 0 0
%= 1001 —d||001 0]||—singd0 cosg0] (15
000 11{000 1 0 0 0 1
1 0 0 0117 cos¢
0 cos¢ —sing 0|} 7 sing
0 sing cos¢ 0 0
0 0 0 1 1

From the above equation, p, coordinate of point p with
respect to body attached coordinate system, and df .9
are expressed as follows,

cosf » cosgd+sind sing » sing—e
cos¢ » sing

Po = —sin@ 7 cos¢+ cosf sing » sing—d (16)
1
N
1
—sinf cos¢
Af (D= sin¢ & A D’ (8) Pdrdd an
—cos 8 cos¢

and we can derive differential torque dr,,,(#) as

At (D= Do % df un (1), (18)
From the mathematical manipulations, we obtain
Lot (D) = [ d (D (19)
— —sind cos¢ 4
=] 0 |x sin ¢ £ X D2y (D) ”271
—d —cos 8 cos¢

By using above torques of main rotor and tail rotor, we
can derive rotational dynamics approximately with res—
pect to body attached coordinate system as follows,

@
@ = Ti(D+ (D). (20)
@ by

T

C. Relationship between coordinate systems

Let w () and w (D be the angular velocity of heli-
copter with respect to world coordinate system and body
attached coordinate systems respectively.
The relation between o ,(# and w (¥ becomes

w (D)= "R w,b (21)
where
@ (D o (1)
w,(D= (A)y(t) , Wyp= | @ x(D (22)
Also we can see that the following relation is satisfied
“R(f) “Ry(d '=1I (23)

If we differentiate above equation with respect to time,
we have
Y Ry

YR 1+ YRy ¥ R '=0. (24)

If we define matrix S(w,) as follows,

0 - a)z( t) wy( t)
(D 0 —wdld (25)
- ol 0

then the following equation is established [5].

Y Ry(t)= Slw,) “Ry(t) (26)
We obtain following equation by applying above equation
to (20).

Slw,) =

oL R(D T wu()
=7, ( “Ry® 'w, D+ “Ryd ' 0,9)

=T, (= “Ry) 'Sy o)+ “Ry(d 7 0,)

= Tp(D+ T (D 27)
If we use the fact that S(w)we=0 for all o, we obtain
the following rotational dynamic equation as

0= “"Ry(D I ' 15D+ T (D) (28)

D. Summary of dynamics of helicopter
In this subsection we summarize dynamic equations of
helicopter.

my by = mpgt "Ry "R, (D fo(D+ Fru(D) (29)

YRAD = Sw) “Ry?) (30)
wo() = "R J, ' (Tou(DF T (D) (31)
where
4
furl) = —gm AN a(DTF 2, (32)
4
Fol® = —g5 AD D75 ay, (33
4
L) = —gq 1 AD (D5 an (34)
—e — sinf cos ¢ , ”714
Fma(8) = lod | e e a0 @
- — COs U cos

IV. Design of controller
In this section, we propose a control scheme based on
variable structure system. In this proposed control
method, we focus only on stabilization of attitude of
helicopter without considering the translational motion.
Let us consider the following dynamic equations con-
cemning the attitude of helicopter,

“Ryt) = S(o,(8) “Ry2 (36)

w, (D = YR DI;'dD (37)
where

WO =7 (D + 1 (D). (38

The control object is to find the control laws such
that “R (9 converges to identity matrix I as fast as
possible, i.e.,

lti_’lg “Rt)=1, (39)

As you can see, if rotational matrix “R ,(# converges to
identity matrix I, the attitude of helicopter is stabilized.
We propose control scheme in 2 steps.

Step 1 @ Find @ (8 which guarantee that “R (9
converges to identity matrix /.
Let us define the following performance index J as



J=t{( “Ry(H-D( "R (H-DTI. (40)
The time derivative of J can be expressed as
J o= ZLCRM=-DC"RO-DTIT ()
-2 tr [S(w,) "R, D]
If we define rotational matrix “R,(# as follows

Ry(H Ryu() Ry()
“R(D=|Ru(d) Rp(d Ruld (42)
Ry(D Rp(d) Ryx(h)

we obtain
tr [S(w,) "Rl = o (D(Ryu(H—Ryu(t)
+ 0, (D(Ry(D—R3(H) + w )R ()—Ry(D). (43)

Therefore we choose w (8, o (9, and w (& as follows
in order to make the time derivative of J be less than
Zero

0 (=Fk,(Ryu(H)—Ryp(1)

o D=k, (R3 ()~ R;3(D) (44)
o )=k (Rp()—Ru(d),

where %k, and %, can be any positive constants.

Step 2 : Find «(# such that equation (44) can be sati—
sfied. At first, we set the sliding surfaces s(# as follows

s 0D~k (Ry()—Rap(d)
s(h= Sy(t‘)}Z wy(t)ky(RIﬂ(t)_ng(t))} (45)
s 8 @)=k, (Rp(D—Ryu(H)

The control object is to find o# such that the state
trajectory hit the sliding surfaces within a finite time and
stay in sliding surface thereafter. For the mathematical
simplicity, we define new sliding surfaces as follows

o) 5.9
o=, D|=J, “Ro(DT sy(t)] (46)
a . (H 5D

As you can see, if the trajectory hit the new sliding
surfaces defined in equation (53) within a finite time,
then it also hit sliding surfaces defined in equation (52)
because matrix J, and “R,(#are nonsingular for all
time ¢ The time derivative of the new sliding surface
o(?) can be expressed as

s D s.(8)
oty = J, © Rb(t)T!sy(t) +75 “Re(D 7| 5,00
5.8 s. (P
s
=Js “ Ru(8) TS(e(D) T[sy(t) )
5.1

wx(t)_‘kx( Ie:ZBW R:SZ)
0, ()—ky,( Ry~ Ryp)
mz(t)_kz( R12_ Rzl)
Therefore we choose the control law as follows which
guarantee that the state trajectory hits the sliding sur—
face within a finite time and then holds on it.

k( R n— R )
k R 31 R 13)
k.(Ryp— Ry)
58 k1sgn(c.B)

s (D kosgn(o (D) } (48)
s A kysgn(o 1)

where k,, k3 and k3 can be any positive constants. In

+7, “RDT

=7, “RyD7

~Js " R,()TS()) T
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real situation the control inputs are 6(8), ¢ a,(H 90,
and ay(H so we must find relation between (#), (%),
A, AY, a(Hand ax() from the equation (34) and
(35). Let us assume that the above relation can be
expressed as

o(8) = F(O(8), ] D), D), a (D, a (). (49)
Using equation (48) and (49), we obtain real control
input as follows

o(s)

b (8

AP =F‘([ry(t)])=F‘(r(t)). (50)
al(t) z.z(t)

a(®

The over all control systems are shown in Fig. 3.
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INPUT CONTROLLER .
F OYNAMICS [T QUTPUT
. i
- SENSOR
ONTROLLER| YY)

Fig. 3. Block diagram of control system.

V. Simulation

In this section, we set the parameter values of
helicopter as shown in table 1 and simulate to illustrate
the effectiveness of proposed control algorithm. The
moment of inertia of helicopter J, is set as follows so
that we can not neglect the term w (¢ xJ, w,{¢) in the
dynamics if the angular velocity of helicopter @ (9 is
not small.

1 0 0
Je=104.1 0 (61
0 0 4.1

The initial value of rotational matrix of helicopter is
given by

0.951 —0.076 0.299
wa(O)—{ 0.168  0.940 —0.294 (52)
—0.259 0.330  0.908

This means that initial attitude of helicopter is rotated
through 10 degree about x, axis, 15 degree about vy,
axis, and 20 degree about z, axis. As you can see in
Table 1, the value of g, is 25 times the value of

Table 1. the parameter values of model helicopter.

parameter value parameter value
& pm 0.1Ckg/m?) e 0.01(m)
& 2.5(kg/m?) d 0.22(m)
vy 0.78(m) l 0.96(m)
7y 0.135(m) 2 2400 (rpm)

v, axis, and 20 degree about z, axis. As you can see
in table 1, the value of gy, is 25 times the value of g,

because the gear ratio between main rotor and tail rotor
is 5. The proposed control law is chosen with the design

parameters 4,=3, k,=3, k.3, £,=3,k,=10 and k=6
The sampling period is set to 0.01 second.
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Even though we derive the control law under the
assumption that w(#) is very small, in simulation we
consider the term (&) xJ, w,(H in dynamics of
rotational motion ,ie., we apply proposed control law to
real dynamics such as

Jo 05D+ 0D xTp 0= 1,(D (53)

Because of the robustness of sliding mode control, we
can obtain good results even though we consider
simplified model to derive the control law. The simulation
results are shown in Figs. 4, 5 and 6.

From Fig. 4, it can be seen that rotational matrix “R,(#)

tracks identity matrix [ within 1.5 seconds. From
Fig. 5, it can be seen that the state trajectory hit the

sliding surfaces within 1 second. As you can see in
Fig. 6, there occur chattering in control input signals. In
real implemetation of control law, we should consider the
chattering problems. This problem can be solved simply
if we use tangent-hyperbolic function instead of sgn
function or use low pass filter in the controller.
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Fig. 4. Rotational matrix “R,(H.
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Fig. 6. Control input signals ( ¢(#),8(8,a (0, a,(H).

VI. Conclusion

In this paper, we derived the simplified dynamic
equations of model helicopter under the assumption that
the angular velocity of helicopter is very small and
proposed robust controller for stabilizing the attitude of
helicopter by using the variable structure system. Even
though we used the simplified dynamic model for
deriving the control law, we obtain good simulation
results because of the robustness of sliding mode control.
From this research, we know the fact that the design of
controller is more easy if the model helicopter is
designed so that the moment of inertia is close to
identity matrix. Even though the model helicopter is not
designed so that the moment of inertia is close to
identity matrix, the robustness of sliding mode control
can cover this kind of control problem. The values of
g4 and gz must be known to implement the proposed

control algorithm and therefore some algorithm to
estimate these values from the raw data of model
helicopter must be developed. The remaining research
work is to invent some kinds of sensors such as
YRy(H and w,
to implement proposed control law. We hope that the
proposed control algorithm can be modified and be
applied to real helicopter. Furthermore the chattering
problem must be consider to implement proposed
controller and the simple remedy of it is that we use
tangent-hyperbolic function instead of sgn function. From
the computer simulation results, we verify the effec-
tiveness of proposed control algorithm.

gyroscope to obtain the information of

Nomenclature

&) > lateral tilt angle

6(d . longitudinal tilt angle

a,()  : angle of attack of main rotor

a,(#) : angle of attack of tail rotor

“Ry(H : rotational matrix of body attached coordi-
nate system with respect to world coordi-
nate system

'R ..(D: rotational matrix of main rotor coordinate
system with respect to body attached coor-
dinate system

7y : radius of main rotor

7y * radius of tail rotor

Js : moment of inertia of helicopter

m, : mass of helicopter

(H  : angular velocity of main rotor

26)) . total torque of helicopter

fo(D : total force of helicopter

p (D : position of helicopter's center of gravity
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