• 제목/요약/키워드: Housing Distribution Price

검색결과 36건 처리시간 0.021초

경제적 지위 측정값으로의 주택자산의 적용 가능성과 한계: 수도권 지역의 아파트 거주자를 중심으로 (The Applicability and Limits of Housing Wealth as the Measure of Socioeconomic Status)

  • 이명진
    • 한국조사연구학회지:조사연구
    • /
    • 제8권2호
    • /
    • pp.1-19
    • /
    • 2007
  • 이 연구는 사회조사에서 개인의 경제적 지위 측정값으로 주택자산의 적용 가능성을 알아 보았다. 이를 위하여 주택자산을 수입이나 주관적 계층평가처럼 기존에 널리 사용되고 있는 경제적 지위 측정값들과 비교하였다. 아울러 이러한 경제적 지위 측정값들과 다른 사회적 변수와의 관계를 살펴봄으로써 기존 변수와 주택자산의 유용성을 비교해 보고자 한다. 이를 위하여 전국의 3,000여 가구를 대상으로 조사된 2005년 전국가족실태조사 중에서 수도권 아파트 거주자 자료와 국민은행의 아파트 시세 자료를 사용하였다. 자료의 제한점에도 불구하고, 이 연구는 몇 가지 시사점을 제시하고 있다. 첫째, 다른 경제적 지위 측정값들과 분포나 다른 변수와의 관계에서 아파트 자산은 상이한 결과를 보였다. 자료수집이라는 측면만을 고려하여 경제적 지위를 측정하는 것은 연구자의 의도와 다른 결과를 산출할 수도 있다는 점을 보여 주고 있다. 둘째, 불완전하지만 아파트 시세 같은 보다 객관적인 지표의 활용 가능성을 적극적으로 검토할 필요가 있다. 최근에 부동산 자산에서 계층별 격차가 더 커지고 있다는 점을 고려할 때, 보다 객관적인 자료가 사회조사에서 적용된다면, 연구자의 의도를 보다 정확하게 반영할 수 있는 한 가지 방법이 될 것이다.

  • PDF

가계 재무건전성이 주택투자수요에 미치는 영향에 관한 연구 (A Study on the Financial Strength of Households on House Investment Demand)

  • 노상윤;윤보현;최영민
    • 유통과학연구
    • /
    • 제12권4호
    • /
    • pp.31-39
    • /
    • 2014
  • Purpose - This study investigates the following two issues. First, we attempt to find the important determinants of housing investment and to identify their significance rank using survey panel data. Recently, the expansion of global uncertainty in the real estate market has directly and indirectly influenced the Korean housing market; households demonstrate a sensitive reaction to changes in that market. Therefore, this study aims to draw conclusions from understanding how the impact of financial strength of the household is related to house investment. Second, we attempt to verify the effectiveness of diverse indices of financial strength such as DTI, LTV, and PIR as measures to monitor the housing market. In the continuous housing market recession after the global crisis, the government places top priority on residence stability. However, the government still imposes forceful restraints on indices of financial strength. We believe this study verifies the utility of these regulations when used in the housing market. Research design, data, and methodology - The data source for this study is the "National Survey of Tax and Benefit" from 2007 (1st) to 2011 (5th) by the Korea Institute of Public Finance. Based on this survey data, we use panel data of 3,838 households that have been surveyed continuously for 5 years. We sort the base variables according to relevance of house investment criteria using the decision tree model (DTM), which is the standard decision-making model for data-mining techniques. The DTM method is known as a powerful methodology to identify contributory variables for predictive power. In addition, we analyze how important explanatory variables and the financial strength index of households affect housing investment with the binary logistic multi-regressive model. Based on the analyses, we conclude that the financial strength index has a significant role in house investment demand. Results - The results of this research are as follows: 1) The determinants of housing investment are age, consumption expenditures, income, total assets, rent deposit, housing price, habits satisfaction, housing scale, number of household members, and debt related to housing. 2) The impact power of these determinants has changed more or less annually due to economic situations and housing market conditions. The level of consumption expenditure and income are the main determinants before 2009; however, the determinants of housing investment changed to indices of the financial strength of households, i.e., DTI, LTV, and PIR, after 2009. 3) Most of all, since 2009, housing loans has been a more important variable than the level of consumption in making housing market decisions. Conclusions - The results of this research show that sound financing of households has a stronger effect on housing investment than reduced consumption expenditures. At the same time, the key indices that must be monitored by the government under economic emergency conditions differ from those requiring monitoring under normal market conditions; therefore, political indices to encourage and promote the housing market must be divided based on market conditions.

The Effect of Gender Imbalance on Housing Price in China

  • HAN, Xinping;AZMAN-SAINI, W.N.W.;ROSLAND, Anitha;BANI, Yasmin;LAW, Siong Hook
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권7호
    • /
    • pp.671-679
    • /
    • 2021
  • House ownership is considered as one of the important pre-conditions for marriage in China. Given that gender imbalance is a prominent issue in the country, competition for marriage partners might motivate males to look for a house and probably bigger and more expensive house. This is believed to have caused house price hikes in recent years. This study aims to investigate the impact of gender imbalance on house prices using data from 30 provinces in China for the 2000-2017 period. The results based on the generalized method of moments (GMM) estimations show that house price is strongly influenced by gender imbalance. However, there is no evidence to support differential effects across eastern and mid-western regions. One potential reason is that pre-marriage house ownership has become a common culture for the whole community and therefore it does not vary significantly across regions. There are several important policy implications. Firstly, the issues should be addressed by the policymakers at national level and not regional level. Secondly, the government should intervene to bring back gender ratio to its normal level. Finally, the government should limit the number of houses people can buy and increase the supply of houses in the market.

부산시 실거래 주택매매 가격을 이용한 공간계량모형의 적합도 비교연구 (A Comparative Study on the Goodness of Fit in Spatial Econometric Models Using Housing Transaction Prices of Busan, Korea)

  • 정건섭;김성우;이양원
    • 한국지리정보학회지
    • /
    • 제15권1호
    • /
    • pp.43-51
    • /
    • 2012
  • 주택시장 분석에 널리 사용되는 헤도닉 방법은 OLS(ordinary least squares) 모형을 이용하는데, 이는 오차가 독립적이며, 평균이 0이고, 분산이 일정하다는 가정에 기초한다. 그러나 공간 자기상관이 존재할 경우에는 이러한 가정에 위배되며, 공간효과를 제대로 반영하지 않으면 왜곡된 추정결과를 가져오게 된다. 최근 이에 대한 대안으로 공간계량모형이 도입되고 있는데, 이 연구에서는 OLS 모형과 공간계량모형의 적합도를 비교 평가하고자 한다. 부산시 실거래 주택매매 가격자료를 이용하여 분석한 결과, OLS를 이용한 기존의 헤도닉 모형보다는 공간자기상관을 고려한 공간계량모형들이 보다 설명력이 높았다. Dubin이 제시한 기준과 Log Likelihood 기준을 통해 볼 때 공간계량모형 중에서는 공간자기회귀모형(spatial autoregressive model: SAR)모형의 적합도가 높은 것으로 나타났다. 이를 통해 주택가격에 있어서의 공간효과를 확인할 수 있었으며, 재건축 추진여부가 아파트 매매가격에 매우 큰 영향을 미침을 알 수 있었다. 또한 적절한 공간계량모형의 선택은 정부의 주택정책에 있어서도 매우 중요하다고 하겠다.

서울시 아파트 실거래가의 변화패턴 분석 (Analysis of Pattern Change of Real Transaction Price of Apartment in Seoul)

  • 김정희
    • 대한공간정보학회지
    • /
    • 제22권1호
    • /
    • pp.63-70
    • /
    • 2014
  • 본 연구는 국토교통부에서 제공하는 아파트 실거래가자료를 이용하여 2006~2010년까지 5년간의 서울시 아파트실거래가 변화패턴을 시공간적으로 분석하는데 그 목적이 있다. 이를 위해 아파트별 평균 실거래가, 동별 평균 아파트 실거래가 자료를 위치정보자료와 연결하여 GIS데이터로 구축하였다. 분석방법으로는 먼저 공간보간기법 중 크리깅(kriging)을 이용하여 개별 아파트의 시기별/면적별 실거래가의 변화패턴을 분석하였다. 둘째 행정구역(행정동)별 아파트실거래가의 변화패턴을 분석하기 위해 단위 면적별 실거래가의 평균을 계산하여 Moran I 값으로 변환한 후 거래가격의 공간상의 군집도를 분석하였다. 이를 통해 시공간상의 분포패턴을 파악하고, 변화유형까지 유추할 수 있어 주택 및 지역정책에 기초자료로 활용할 수 있다. 시계열 자료를 바탕으로 종적인 변화패턴과 GIS를 이용한 횡적 변화패턴을 분석하기 때문에 아파트가격의 지역 불균형을 한눈에 살펴 볼 수 있다.

CHAID분석을 이용한 나들목 주변 지가의 공간분포 영향모형 개발 - 서울외곽순환고속도로를 중심으로 - (Development of Selection Model of Interchange Influence Area in Seoul Belt Expressway Using Chi-square Automatic Interaction Detection (CHAID))

  • 김태호;박제진;김영일;노정현
    • 대한토목학회논문집
    • /
    • 제29권6D호
    • /
    • pp.711-717
    • /
    • 2009
  • 본 연구는 고속도로 나들목의 접근성이 주변 아파트 지가형성에 미치는 영향 관계를 규명하기 위해서 서울외곽순환고속도로를 중심으로 분석하였다. 분석을 위해서는 데이터마이닝(CHAID분석), 추세선 분석(Trend Analysis) 등을 활용하여 고속도로의 나들목(IC) 주변 아파트가격과 관련된 지가경사 모형을 개발하였다. 분석결과, 첫째, 고속도로 나들목이 위치한 지역별(외측 : 경기도, 내측 : 서울시)로 아파트 가격에 차이가 있으며, 일반적인 주택가격과 교통결절점이 가지는 선형 관계가 아닌 비선형적 관계(2차 다항식)를 가지는 것으로 나타났다. 둘째, CHAID분석을 이용한 공간분포 검토 결과, 외측지역(경기도)의 경우 2.6km를 전후하여 2개의 상이한 공간분포를 가지며, 내측지역(서울시)의 경우 1.4km와 3.8km를 전후하여 3개의 상이한 공간분포를 가지는 것으로 나타났다. 이는 아파트 가격이 도로결절점(고속도로 나들목)으로부터 첫 번째 임계점까지 는 점차 상승하다가 일정거리 이후부터 서서히 감소하는 복합적인 공간분포를 가지는 것으로 나타나 교통접근성이 좋다고 하여 주택가격이 높지만은 않으며, 주거환경(고속도로 소음, 지역단절 등)과 교통접근성간의 상호 교환 작용(Trade Off Effect)에 의한 현상이라 할 수 있다. 향후 본 연구의 고속도로 나들목 주택가격 영향모형을 이용하여 고속도로 주변에 지속적으로 건설되고 있는 신도시 주택가격 산정에 활용이 가능할 것으로 판단된다.

공간통계기법을 이용한 서울시 아파트 실거래가 변인의 시공간적 이질성 분석 (An Analysis on the Spatio-temporal Heterogeneity of Real Transaction Price of Apartment in Seoul Using the Geostatistical Methods)

  • 김정희
    • 대한공간정보학회지
    • /
    • 제24권4호
    • /
    • pp.75-81
    • /
    • 2016
  • 본 연구에서는 아파트 실거래가와 이에 영향을 미치는 변인들의 공간적 이질성을 시공간적인 측면에서 탐색하는데 초점을 두었다. 아파트 실거래가에 영향을 미칠 것으로 사료되는 독립변수로서 교통 및 지역적 특성과 교육여건, 인구 경제적 특성을 고려하였다. 따라서 전역적인 측면과 국지적인 측면에서 독립변수의 영향력과 공간상의 분포패턴을 분석하였으며, 종속변수인 아파트 실거래가의 시공간적인 변화패턴을 살펴보았다. 먼저, 분석모형 구축을 위해 일반최소제곱분석과 지리가중회귀분석을 수행하여 보다 효율적이고 적합한 모형을 채택하였다. 2010년과 2013년의 모형 분석결과는 유사한 패턴을 보이며, 두 시기 모두 지리가중회귀모형이 일반최소제곱모형보다 더 설명력이 있는 모형인 것으로 분석되었다. 둘째, 채택된 지리가중회귀모형을 이용하여 독립변수의 시공간적 이질성을 파악하기 위해 Local $R^2$를 이용하여 국지적 분석을 수행하였다. Local $R^2$값은 지역별로 상이하게 나타났으며 이는 공간상의 이질성이 존재함을 보여주는 것으로 판단할 수 있다. 셋째, 지리가중회귀분석 시 종속변수로 사용했던 아파트 실거래가의 시기별/전용면적별 공간분포를 살펴보기 위해 크리깅분석을 실시하였다. 이를 통해 아파트 실거래가와 같은 공간데이터에 영향을 미치는 외부적 환경도 지역별 이질성이 크기 때문에 공간적 편차가 있는 것으로 나타났다. 따라서 이러한 결과를 바탕으로 보다 미시적인 주택하위시장분석을 수행할 수 있고, 부동산정책을 수립하는데 근간이 될 수 있을 것으로 사료된다.

An Empirical Testing of a House Pricing Model in the Indian Market

  • HODA, Najmul;JAFRI, Syed Ashraf;AHMAD, Naim;HUSSAIN, Syed Mannawar
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권8호
    • /
    • pp.33-40
    • /
    • 2020
  • The main aim of the study is to test a house pricing model by combining hedonic and asset-based pricing models. An understanding of the relationship between house pricing and its return (the rental income) helps to establish houses as a significant asset class. The model tested the relationship between house pricing (dependent variable) and the house attributes (independent variables) derived from Freeman's framework of housing attributes. This study uses a large data-set of 1,899 sample of new, high-end houses purchased between 2016 and 2019 collected from the national capital region of India (Delhi-NCR). The algorithm was built in R-Script, and stepwise multiple linear regression was used to analyze the model. The analysis of the model proves that the three significant variables, namely, carpet area, pay-off, and annual maintenance charges explain the price function. Further, the model is statistically fit. The major contribution of the study is to understand the key factors and their influence on the house pricing. The model will be helpful in risk assessment in the housing investment and enhance the chances of investment. Policy-makers can use information about the underlying valuation drivers of the house prices to stabilize the market and also in framing the tax policies.

신도시 택지개발사업지역에서 토지가격 결정요인에 관한 연구 (A Study on the Determinants of Land Price in a New Town)

  • 정태윤
    • 부동산연구
    • /
    • 제28권1호
    • /
    • pp.79-90
    • /
    • 2018
  • 본 연구는 주택지의 가격결정모형을 추정하여 신도시 주거용 토지의 가격 결정요인 알아보고자 하였다. 이를 위해서 경상남도 김해시 장유신도시 지역에서 택지개발사업으로 조성된 주택지 1,000여 필지의 실거래 가격자료를 대상으로 헤도닉 특성이 주택지 가격에 미치는 영향을 GLS 분석방법과 분위수 회귀분석방법을 이용하여 분석하였다. 본 연구는 주택지 가격과 그 오차가 정규분포를 가질 때 조건부 평균을 추정하는 GLS 추정결과와 비교하기 위해 주택지 가격이 대칭적이지 않고 정규분포를 가지지 아니할 때 조건부 분위수별 추정을 위해 분위수 회귀분석 모형을 사용하였다. 그 결과 가격 분위수별로 해당 특성이 미치는 영향의 차이를 확인할 수 있었다. 경과 연수변수는 음의 영향을 보였지만 일정기간을 경과하면 다시 양의 영향을 보이는 것으로 나타났으며, 그 반전기간은 고가주택지 분위수에서 좀 더 높은 값을 보였다. 신도시 주택지 중에서 점포 겸용택지의 긍정적인 영향이 가장 크게 나타났으며, 주택지의 수요자는 도로에 한면만 접한 토지보다 두면이상 접한 각지의 토지, 부정형토지보다는 사각형의 토지를 선호하는 것으로 나타났다. 각지는 주택지의 일조권 개선에 긍정적이며, 인접대지 경계로부터의 이격거리로 인한 건축면적의 감소가 적기 때문에 이 같은 결과를 보인 것으로 판단된다. 점포겸용택지 변수는 저가 주택용 토지에서 더 큰 영향을 미치는 것으로 나타났다. 이는 저가의 주거용 토지가 대부분 임대형 주택 건부지로 사용되는 경향이 많아 자가 거주용 주택 건부지와 다른 특성을 가지기 때문으로 보인다. 주거용 토지가격은 가격 수준에 따라 다른 특성을 지니며, 담보가지의 평가와 부동산 정책의 입안에 있어서 이를 고려하여야 할 것으로 보인다.

자산가격의 결정요인에 대한 실증분석 : 미국사례를 중심으로 (A Study on Determinants of Asset Price : Focused on USA)

  • 박형규;정동빈
    • 산경연구논집
    • /
    • 제9권5호
    • /
    • pp.63-72
    • /
    • 2018
  • Purpose - This work analyzes, in detail, the specification of vector error correction model (VECM) and thus examines the relationships and impact among seven economic variables for USA - balance on current account (BCA), index of stock (STOCK), gross domestic product (GDP), housing price indices (HOUSING), a measure of the money supply that includes total currency as well as large time deposits, institutional money market funds, short-term repurchase agreements and other larger liquid assets (M3), real rate of interest (IR_REAL) and household credits (LOAN). In particular, we search for the main explanatory variables that have an effect on stock and real estate market, respectively and investigate the causal and dynamic associations between them. Research design, data, and methodology - We perform the time series vector error correction model to infer the dynamic relationships among seven variables above. This work employs the conventional augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root techniques to test for stationarity among seven variables under consideration, and Johansen cointegration test to specify the order or the number of cointegration relationship. Granger causality test is exploited to inspect for causal relationship and, at the same time, impulse response function and variance decomposition analysis are checked for both short-run and long-run association among the seven variables by EViews 9.0. The underlying model was analyzed by using 108 realizations from Q1 1990 to Q4 2016 for USA. Results - The results show that all the seven variables for USA have one unit root and they are cointegrated with at most five and three cointegrating equation for USA. The vector error correction model expresses a long-run relationship among variables. Both IR_REAL and M3 may influence real estate market, and GDP does stock market in USA. On the other hand, GDP, IR_REAL, M3, STOCK and LOAN may be considered as causal factors to affect real estate market. Conclusions - The findings indicate that both stock market and real estate market can be modelled as vector error correction specification for USA. In addition, we can detect causal relationships among variables and compare dynamic differences between countries in terms of stock market and real estate market.