• Title/Summary/Keyword: Hourly rainfall

Search Result 182, Processing Time 0.03 seconds

Regional frequency analysis of sub-hourly rainfall observation in Seoul (초단기 강우자료를 이용한 서울의 지역빈도해석 결과)

  • Ju-Yong Shin;Seoyoung Kim;Jimin Kim;Gayoung Lee;Soobin Cho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.387-387
    • /
    • 2023
  • 2022년 중부권 폭우로 인하여 서울 강남구에서 도시홍수가 발생하였고, 많은 인명 및 경제적 지해를 유발하였다. 기후변화로 야기되는 극한 강우의 발생 패턴 및 강우 패턴의 변화가 많은 연구에서 확인되어 오고 있다. 한국의 경우 극한 강우가 국지적이고 단기간에 많은 강우량을 발생시키는 패턴으로 변화하고 있는 것으로 연구되고 있다. 특히, 도시홍수의 경우 도달시간이 매주 짧기 때문에, 초단기간에 대한 강우분석이 필요하나, 강우관측시스템의 한계로 인하여 현재까지는 초단기간에 대한 극한 강우분석이 미비한 실정이다. 1997년 이후로 기상청에서는 지속적으로 방재기상관측망(Automatic Weather System, AWS)를 설치를 하였고, 최근에 설치된 AWS의 경우 초단기간 강우량 자료를 관측할 수 있는 장비 및 시스템을 구축하고 있으나, 운영된 기간이 짧아 빈도해석에 적용하기에 한계점이 많다. 본 연구에서는 서울 지역에서 영향을 주는 40여개의 AWS의 초단기간 강우량 자료를 이용하여 서울 지역을 확률강우량을 산정하고자 한다. 짧은 관측기간으로부터 발생하는 확률강우량 추정불확실성의 저감을 위해서 지역빈도해석을 적용하였다. 지역빈도해석으로는 지수홍수법을 적용하였다. 추가적으로 서울안에서 공간적으로 확률강우량의 편차에 대하여 조사 분석하였다. 본 연구의 결과를 통하여 서울지역의 초단기간에 대한 안정적인 확률강우량의 추정이 가능할 것으로 예상되며, 추가적으로 지역별 확률강우량의 차이를 비교분석 할 수 있을 것으로 기대된다.

  • PDF

Calculation of future rainfall scenarios to consider the impact of climate change in Seoul City's hydraulic facility design standards (서울시 수리시설 설계기준의 기후변화 영향 고려를 위한 미래강우시나리오 산정)

  • Yoon, Sun-Kwon;Lee, Taesam;Seong, Kiyoung;Ahn, Yujin
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.6
    • /
    • pp.419-431
    • /
    • 2021
  • In Seoul, it has been confirmed that the duration of rainfall is shortened and the frequency and intensity of heavy rains are increasing with a changing climate. In addition, due to high population density and urbanization in most areas, floods frequently occur in flood-prone areas for the increase in impermeable areas. Furthermore, the Seoul City is pursuing various projects such as structural and non-structural measures to resolve flood-prone areas. A disaster prevention performance target was set in consideration of the climate change impact of future precipitation, and this study conducted to reduce the overall flood damage in Seoul for the long-term. In this study, 29 GCMs with RCP4.5 and RCP8.5 scenarios were used for spatial and temporal disaggregation, and we also considered for 3 research periods, which is short-term (2006-2040, P1), mid-term (2041-2070, P2), and long-term (2071-2100, P3), respectively. For spatial downscaling, daily data of GCM was processed through Quantile Mapping based on the rainfall of the Seoul station managed by the Korea Meteorological Administration and for temporal downscaling, daily data were downscaled to hourly data through k-nearest neighbor resampling and nonparametric temporal detailing techniques using genetic algorithms. Through temporal downscaling, 100 detailed scenarios were calculated for each GCM scenario, and the IDF curve was calculated based on a total of 2,900 detailed scenarios, and by averaging this, the change in the future extreme rainfall was calculated. As a result, it was confirmed that the probability of rainfall for a duration of 100 years and a duration of 1 hour increased by 8 to 16% in the RCP4.5 scenario, and increased by 7 to 26% in the RCP8.5 scenario. Based on the results of this study, the amount of rainfall designed to prepare for future climate change in Seoul was estimated and if can be used to establish purpose-wise water related disaster prevention policies.

Prediction of multipurpose dam inflow using deep learning (딥러닝을 활용한 다목적댐 유입량 예측)

  • Mok, Ji-Yoon;Choi, Ji-Hyeok;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.97-105
    • /
    • 2020
  • Recently, Artificial Neural Network receives attention as a data prediction method. Among these, a Long Shot-term Memory (LSTM) model specialized for time-series data prediction was utilized as a prediction method of hydrological time series data. In this study, the LSTM model was constructed utilizing deep running open source library TensorFlow which provided by Google, to predict inflows of multipurpose dams. We predicted the inflow of the Yongdam Multipurpose Dam which is located in the upper stream of the Geumgang. The hourly flow data of Yongdam Dam from 2006 to 2018 provided by WAMIS was used as the analysis data. Predictive analysis was performed under various of variable condition in order to compare and analyze the prediction accuracy according to four learning parameters of the LSTM model. Root mean square error (RMSE), Mean absolute error (MAE) and Volume error (VE) were calculated and evaluated its accuracy through comparing the predicted and observed inflows. We found that all the models had lower accuracy at high inflow rate and hourly precipitation data (2006~2018) of Yongdam Dam utilized as additional input variables to solve this problem. When the data of rainfall and inflow were utilized together, it was found that the accuracy of the prediction for the high flow rate is improved.

Proposing Research and Development Activities for Utilizing the Global Precipitation Measurement (GPM) (전구강수관측(GPM) 활용을 위한 제언)

  • Sohn, Byung-Ju;Nam, Jae-Cheol;Park, Seon-Ki;Ahn, Myung-Hwan;Yoo, Jung-Moon;Lee, Hee-Sang;Chang, Dong-Eon;Ho, Chang-Hoi;Bae, Deg-Hyo;Kim, Seong-Jun;Oh, Hyun-Jong;Park, Seong-Chan;Kim, Ju-Hong
    • Atmosphere
    • /
    • v.15 no.1
    • /
    • pp.47-57
    • /
    • 2005
  • Extending the success of the Tropical Rainfall Measuring Mission (TRMM), the spaceborne measurement of precipitation by Global Precipitation Measurement (GPM) is initiated. The GPM consists of a core satellite which will have a dual-frequency precipitation radar (DPR) and a constellation of small satellites equipped with microwave radiometers. The GPM is inherently a global program. Responding to the GPM plan, many other nations are much interested in participating in the GPM team or simply utilizing GPM products aiming at the development of meteorological technology. Korea can fully function its role if Korea is selected as a CAL/VAL site for the GPM because Korea maintains a well-established dense rain gauge network (AWS), precipitation radars, and the Haenam super site for surface observation. In this feasibility study, the necessities of the GPM project in the context of academical and social backgrounds and associated international and domestic activities are investigated. And GPM-related core technologies and application areas are defined. As a result, it is found that GPM will represent a great opportunity for us because of its ability to provide not only much enhanced three-hourly global rain products but also very useful tools for the enhancement of weather forecasting capabilities, management of water resources, development and implementation of monitoring techniques for severe weather phenomena, agricultural managements and climate application. Furthermore, rain retrieval and CAL/VAL technologies obtained during the involvement in the international GPM project will serve as basic knowledges to run our own geostationary satellite program.

Uncertainty Assessment of Single Event Rainfall-Runoff Model Using Bayesian Model (Bayesian 모형을 이용한 단일사상 강우-유출 모형의 불확실성 분석)

  • Kwon, Hyun-Han;Kim, Jang-Gyeong;Lee, Jong-Seok;Na, Bong-Kil
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.505-516
    • /
    • 2012
  • The study applies a hydrologic simulation model, HEC-1 developed by Hydrologic Engineering Center to Daecheong dam watershed for modeling hourly inflows of Daecheong dam. Although the HEC-1 model provides an automatic optimization technique for some of the parameters, the built-in optimization model is not sufficient in estimating reliable parameters. In particular, the optimization model often fails to estimate the parameters when a large number of parameters exist. In this regard, a main objective of this study is to develop Bayesian Markov Chain Monte Carlo simulation based HEC-1 model (BHEC-1). The Clark IUH method for transformation of precipitation excess to runoff and the soil conservation service runoff curve method for abstractions were used in Bayesian Monte Carlo simulation. Simulations of runoff at the Daecheong station in the HEC-1 model under Bayesian optimization scheme allow the posterior probability distributions of the hydrograph thus providing uncertainties in rainfall-runoff process. The proposed model showed a powerful performance in terms of estimating model parameters and deriving full uncertainties so that the model can be applied to various hydrologic problems such as frequency curve derivation, dam risk analysis and climate change study.

A combined sewer design method using tractive force considering wastewater flow on non-rainy days and its application for improvement methods of sewer (청천시 오수량을 고려한 합류식 하수도 소류력 설계법과 이를 활용한 하수관거 개보수방안)

  • Ji, Hyon Wook;Yoo, Sung Soo;Song, Homyeon;Kang, Jeong-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.3
    • /
    • pp.211-220
    • /
    • 2020
  • When domestic sewage and rainwater runoff are discharged into a single sewer pipe, it is called a "combined sewer system." The sewage design standards in Korea specify the flow velocity based only on the volume of rainfall; therefore, sedimentation occurs on non-rainy days owing to the reduced flow rate and velocity. This sedimentation reduces the discharge capacity, causes unpleasant odors, and exacerbates the problem of combined sewer overflow concentration. To address this problem, the amount of sewage on non-rainy days, not just the volume of rainfall, should also be considered. There are various theories on sedimentation in sewer movement. This study introduces a self-cleansing velocity based on tractive force theory. By applying a self-cleansing velocity equivalent to the critical shear stress of a sand particle, sedimentation can be reduced on non-rainy days. The amount of sewage changes according to the water use pattern of citizens. The design hourly maximum wastewater flow was considered as a representative value, and the velocity of this flow should be more than the self-cleansing velocity. This design method requires a steeper gradient than existing design criteria. Therefore, the existing sewer pipelines need to be improved and repaired accordingly. In this study, five types of improvement and repair methods that can maximize the use of existing pipelines and minimize the depth of excavation are proposed. The key technologies utilized are trenchless sewer rehabilitation and complex cross-section pipes. Trenchless sewer rehabilitation is a popular sewage repair method. However, it is complex because the cross-section pipes do not have a universal design and require continuous research and development. In an old metropolis with a combined sewer system, it is difficult to carry out excavation work; hence, the methods presented in this study may be useful in the future.

Variations of Summertime Temperature Lapse Rate within a Mountainous Basin in the Republic of Korea -A case study of Punch Bowl, Yanggu in 2009- (우리나라 산악분지의 여름철 기온감률 변화 -2009년 양구 펀치볼을 사례로-)

  • Choi, Gwang-Yong;Lee, Bo-Ra;Kang, Sin-Kyu;John, Tenhunen
    • Journal of the Korean association of regional geographers
    • /
    • v.16 no.4
    • /
    • pp.339-354
    • /
    • 2010
  • In this study, diurnal and intra-seasonal variations of summertime temperature lapse rate (TLR) by synoptic weather conditions in a mountainous basin are examined based on hourly temperature data observed in 2009 summer at an Automatic Weather Station (AWS) network deployed in Haean basin (called Punch Bowl), Yanggu in the Republic of Korea. Summertime average TLR between the top and bottom of the basin is $-0.53^{\circ}C$/100m. Due to its diurnal variations, TLR shows the lowest by $-0.25^{\circ}C$/100m at 6AM, while it maximizes up to $-0.85^{\circ}C$/100m between 4PM~5PM. Comparisons of daily average TLRs by synoptic weather patterns reveal that the magnitude of TLRs is greatest in the order of rainy days ($-0.63^{\circ}C$/100m), heavy rainfall days ($-0.53^{\circ}C$/100m), partly cloudy days ($-0.47^{\circ}C$/100m), and sunny days ($-0.39^{\circ}C$/100m). At dawn on sunny days in summer, strong cooling pools accompanying temperature inversion layers are formed within the basin, while on heavy rainfall days, warming pools are observed due to relatively low TLRs associated with the reduction of surface radiation cooling by clouds.

  • PDF

The Distribution of Precipitation in Sokcho Area (속초지방의 강수 분포)

  • 이장렬
    • The Korean Journal of Quaternary Research
    • /
    • v.14 no.2
    • /
    • pp.117-123
    • /
    • 2000
  • This study examined the spatial distribution of precipitation in Sokcho area. The hourly, daily and monthly precipitation on the 2 stations, 5 AWS in Sokcho area were analyzed by daily, monthly, altitudinal distribution and synoptic environment. The results of the Study are as follows. The amount of Yearly precipitation, 1970~1999 in Sokcho area is gradually increasing. The amount of monthly precipitation 1970~1999 at Sorak weather observation station (altitude 148m), Compared with that in 7 Stations is greatest in spring, Summer and autumn. Because the valleys near Ssangcheon river are funnels for sea wind into Sorak weather observation station. The amount of Summerly precipitation at Mishiryong(1993~1999), the highest altitude in 7 weather observations stations is more 95.2mm than that of Sokcho airport, the lowest altitude, but the amount of winterly precipitation at Sokcho airport is more 89.6mm than that of Mishiryong. When the heavy rainfall and the heavy Snowfall occured in Sokcho area, wind systems were mainly a sea wind (north-north-eastly wind, north-westly wind) and daily mean wind speed was respectively 4.4㎧, 3.6㎧. The amount of the heavy rainfall and heavy snow fall in Sokcho area is closely associated with the north-eastly stream at the lower and the upper level toward the coast of East sea(Sokcho area).

  • PDF

Snow Melting Simulation of Gwangdong Dam Basin in the Spring Season Using Developed K-DRUM Model (K-DRUM 모형의 개선을 통한 광동댐 유역의 봄철 융설 모의)

  • Kim, Hyeon Sik;Kang, Shin Uk;Hwang, Phyil Sun;Hur, Young Teck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6B
    • /
    • pp.355-361
    • /
    • 2012
  • Gwangdong Dam Watershed is affected by the increased discharge caused by the melting snow in the spring season. Therefore, simulation results obtained using hydrologic models have generally been inaccurate in relation to discharge without snow pack and melt modules. In this research, a grid based distributed rainfall runoff model (K-DRUM) was developed using a snow pack and melt module, and has been applied in the Gwangdong Dam Watershed to simulate the discharge for a four year period. A previous version of K-DRUM, which does not include a snow pack or melt module, was used to calculate the discharge in order to compare the snow melt effect. The simulation period lasted about 7 months from October of the previous year to April of this year using hourly precipitation and weather observed data. To evaluate the model performance, NSE, PBIAS and RSR statistics techniques were applied using the simulation results of the discharge. From the results of reliability evaluation, the K-DRUM model, which uses a snow pack and melt module, had a good applicability for the runoff simulation considering the snow melt effect in the spring.

Effect of Chain Type Mole-Drainer Attached to Tractor for Drainage Improvement (배수개선을 위한 트랙터 부착식 체인형 암거 천공기의 적용 효과)

  • Jeon, Jonggil;Choi, Yonghun;Kim, Minyoung;Kim, Youngjin;Lee, Sangbong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.4
    • /
    • pp.63-73
    • /
    • 2020
  • The area of paddy fields for upland crop cultivation is gradually increasing. In this context, we developed a chain type mole drainer that can be attached to a tractor to prevent the wet injury of crops. To conduct a field test, we formed underdrains at 2 m intervals in a paddy field wherein soybeans are cultivated, and we investigated the status of the soil moisture, groundwater level, and soybean growth during the cultivation period. The soil moisture content decreased by 22.3~26.8% in the test plot and by 5.9~6.9% in the control plot during a period of 57~88 hour after a rainfall of 41.5~157.0 mm. The effect of underdrainage was clear as the hourly groundwater level decreased approximately 2.8 times faster in the test plot compared with the control plot. Moreover, the soybean yield was greater by 78.6 kg/10a in the test plot than in the control plot. Therefore, for soybean cultivation in paddy fields, the use of the developed mole drainer is expected to help in improving the drainage and increasing the soybean yield.