• Title/Summary/Keyword: Hourly precipitation series

Search Result 21, Processing Time 0.029 seconds

A Stochastic Simulation Model for the Precipitation Amounts of Hourly Precipitation Series (시간강수계열의 강수량 모의발생을 위한 추계학적 모형)

  • Lee, Jung-Sik;Lee, Jae-joon;Park, Jong-Young
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.763-777
    • /
    • 2002
  • The objective of this study is to develop computer simulation model that produces precipitation patterns from stochastic model. The hourly precipitation process consists of the precipitation occurrence and precipitation amounts. In this study, an event cluster model developed by Lee and Lee(2002) is used to describe the occurrence process of events, and the hourly precipitation amounts within each event is described by a nonstationary form of a first-order autoregressive process. The complete stochastic model for hourly precipitation is fitted to historical precipitation data by estimating the model parameters. An analysis of historical and simulated hourly precipitation data for Seoul indicates that the stochastic model preserves many of the features of historical precipitation. The autocorrelation coefficients of the historical and simulated data are nearly identical except for lags more than about 3 hours. The precipitation intensity, duration, marginal distributions, and conditional distributions for event characteristics for the historical and simulated data showed in general good agreement with each other.

A Stochastic Model for Precipitation Occurrence Process of Hourly Precipitation Series (시간강수계열의 강수발생과정에 대한 추계학적 모형)

  • Lee, Jae-Jun;Lee, Jeong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.1
    • /
    • pp.109-124
    • /
    • 2002
  • This study is an effort to develop a stochastic model of precipitation series that preserves the pattern of occurrence of precipitation events throughout the year as well as several characteristics of the duration, amount, and intensity of precipitation events. In this study an event cluster model is used to describe the occurrence of precipitation events. A logarithmic negative mixture distribution is used to describe event duration and separation. The number of events within each cluster is also described by the Poisson cluster process. The duration of each event within a cluster and the separation of events within a single cluster are described by a logarithmic negative mixture distribution. The stochastic model for hourly precipitation occurrence process is fitted to historical precipitation data by estimating the model parameters. To allow for seasonal variations in the precipitation process, the model parameters are estimated separately for each month. an analysis of thirty-four years of historical and simulated hourly precipitation data for Seoul indicates that the stochastic model preserves many features of historical precipitation. The seasonal variations in number of precipitation events in each month for the historical and simulated data are also approximately identical. The marginal distributions for event characteristics for the historical and simulated data were similar. The conditional distributions for event characteristics for the historical and simulated data showed in general good agreement with each other.

Derivation of IDF Curve by the Simulation of Hourly Precipitation using Nonhomogeneous Markov Chain Model (비동질성 Markov 모형에 의한 시간강수량 모의발생을 이용한 IDF 곡선의 유도)

  • Moon, Young-Il;Choi, Byung-Kyu;Oh, Tae-Suk
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.501-504
    • /
    • 2008
  • A non-homogeneous markov model which is able to simulate hourly rainfall series is developed for estimating reliable hydrological variables. The proposed approach is applied to simulate hourly rainfall series in Korea. The simulated rainfall is used to estimate the design rainfall and compared to observations in terms of reproducing underlying distributions of the data to assure model's validation. The model shows that the simulated rainfall series reproduce a similar statistical attribute with observations, and expecially maximum value is gradually increased as number of simulation increase.

  • PDF

Derivation of Intensity-Duration-Frequency and Flood Frequency Curve by Simulation of Hourly Precipitation using Nonhomogeneous Markov Chain Model (비동질성 Markov 모형의 시간강수량 모의 발생을 이용한 IDF 곡선 및 홍수빈도곡선의 유도)

  • Choi, Byung-Kyu;Oh, Tae-Suk;Park, Rae-Gun;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.251-264
    • /
    • 2008
  • In this study, a nonhomogeneous markov model which is able to simulate hourly rainfall series is developed for estimating reliable hydrologic variables. The proposed approach is applied to simulate hourly rainfall series in Korea. The simulated rainfall is used to estimate the design rainfall and flood in the watershed, and compared to observations in terms of reproducing underlying distributions of the data to assure model's validation. The model shows that the simulated rainfall series reproduce a similar statistical attribute with observations, and expecially maximum value is gradually increased as number of simulation increase. Therefore, with the proposed approach, the non-homogeneous markov model can be used to estimate variables for the purpose of design of hydraulic structures and analyze uncertainties associated with rainfall input in the hydrologic models.

A development of multisite hourly rainfall simulation technique based on neyman-scott rectangular pulse model (Neyman-Scott Rectangular Pulse 모형 기반의 다지점 강수모의 기법 개발)

  • Moon, Jangwon;Kim, Janggyeong;Moon, Youngil;Kwon, Hyunhan
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.11
    • /
    • pp.913-922
    • /
    • 2016
  • A long-term precipitation record is typically required for establishing the reliable water resources plan in the watershed. However, the observations in the hourly precipitation data are not always consistent and there are missing values within the time series. This study aims to develop a hourly rainfall simulator for extending rainfall data, based on the well-known Neyman-Scott Rectangular Pulse Model (NSRPM). Moreover, this study further suggests a multisite hourly rainfall simulator to better reproduce areal rainfalls for the watershed. The proposed model was validated with a network of five weather stations in the Uee-stream watershed in Seoul. The proposed model appeared a reasonable result in terms of reproducing most of the statistics (i.e. mean, variance and lag-1 autocovariance) of the rainfall time series at various aggregation levels and the spatial coherence over the weather stations.

Study on Temporal and Spatial Characteristics of Summertime Precipitation over Korean Peninsula (여름철 한반도 강수의 시·공간적 특성 연구)

  • In, So-Ra;Han, Sang-Ok;Im, Eun-Soon;Kim, Ki-Hoon;Shim, JaeKwan
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.159-171
    • /
    • 2014
  • This study investigated the temporal and spatial characteristics of summertime (June-August) precipitation over Korean peninsula, using Korea Meteorological Administration (KMA)is Automated Synoptic Observing System (ASOS) data for the period of 1973-2010 and Automatic Weather System (AWS) data for the period of 1998-2010.The authors looked through climatological features of the summertime precipitation, then examined the degree of locality of the precipitation, and probable precipitation amount and its return period of 100 years (i.e., an extreme precipitation event). The amount of monthly total precipitation showed increasing trends for all the summer months during the investigated 38-year period. In particular, the increasing trends were more significant for the months of July and August. The increasing trend of July was seen to be more attributable to the increase of precipitation intensity than that of frequency, while the increasing trend of August was seen to be played more importantly by the increase of the precipitation frequency. The e-folding distance, which is calculated using the correlation of the precipitation at the reference station with those at all other stations, revealed that it is August that has the highest locality of hourly precipitation, indicating higher potential of localized heavy rainfall in August compared to other summer months. More localized precipitation was observed over the western parts of the Korean peninsula where terrain is relatively smooth. Using the 38-years long series of maximum daily and hourly precipitation as input for FARD2006 (Frequency Analysis of Rainfall Data Program 2006), it was revealed that precipitation events with either 360 mm $day^{-1}$ or 80 mm $h^{-1}$ can occur with the return period of 100 years over the Korean Peninsula.

Conversion Factor Calculation of Annual Maximum Precipitation in Korea Between Fixed and Sliding Durations (고정시간과 임의시간에 따른 우리나라 연최대강우량의 환산계수 산정)

  • Oh, Tae Suk;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.515-524
    • /
    • 2008
  • An estimation of reliable probability precipitation is one of the most important processes for reasonable hydrologic structure design. A probability precipitation has been calculated by frequency analysis using annual maximum rainfall series on the each duration among the observed rainfall data. Annual maximum rainfall series have abstracted on hourly rainfall data or daily rainfall data. So, there is necessary to proper conversion factor between the fixed and sliding durations. Therefore, in this study, conversion factors on the each duration between fixed and sliding durations have calculated using minutely data compared to hourly and daily data of 37 stations observed by Meteorological Administration in Korea. Also, regression equations were computed by regression analysis of conversion factors on the each duration. Consequently, conversion factors were used basis data for calculations of stable probability precipitation.

River Flow Forecasting Model for the Youngsan Estuary Reservoir Operations(I) -Estimation Runof Hydrographs at Naju Station (영산호 운영을 위한 홍수예보모형의 개발(I) -나주지점의 홍수유출 추정-)

  • 박창언;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.4
    • /
    • pp.95-102
    • /
    • 1994
  • The series of the papers consist of three parts to describe the development, calibration, and applications of the flood forecasting models for the Youngsan Estuarine Dam located at the mouth of the Youngsan river. And this paper discusses the hydrologic model for inflow simulation at Naju station, which constitutes 64 percent of the drainage basin of 3521 .6km$^2$ in area. A simplified TANK model was formulated to simulate hourly runoff from rainfall And the model parameters were optirnized using historical storm data, and validated with the records. The results of this paper were summarized as follows. 1. The simplified TANK model was formulated to conceptualize the hourly rainfall-run-off relationships at a watershed with four tanks in series having five runoff outlets. The runoff from each outlet was assumed to be proportional to the storage exceeding a threshold value. And each tank was linked with a drainage hole from the upper one. 2. Fifteen storm events from four year records from 1984 to 1987 were selected for this study. They varied from 81 to 289rn'm The watershed averaged, hourly rainfall data were determined from those at fifteen raingaging stations using a Thiessen method. Some missing and unrealistic records at a few stations were estimated or replaced with the values determined using a reciprocal distance square method from abjacent ones. 3. An univariate scheme was adopted to calibrate the model parameters using historical records. Some of the calibrated parameters were statistically related to antecedent precipitation. And the model simulated the streamflow close to the observed, with the mean coefficient of determination of 0.94 for all storm events. 4. The simulated streamflow were in good agreement with the historical records for ungaged condition simulation runs. The mean coefficient of determination for the runs was 0.93, nearly the same as calibration runs. This may indicates that the model performs very well in flood forecasting situations for the watershed.

  • PDF

A Qualitative Analysis of WRF Simulation Results of Typhoon 'Rusa' Case (태풍 루사와 관련된 WRF의 수치모의 결과 분석)

  • Kim, Jin-Won;Lee, Jae Gyoo
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.393-405
    • /
    • 2007
  • Simulation results of WRF for the case of typhoon 'Rusa' were analyzed, comparing with observed data especially forjavascript:confirm_mark('abe', '1'); the Gangneung area around to examine its ability in numerical simulation. From the hourly precipitation time series, two peaks were found at Gangneung and Daegwallyeong, while only one peak was found from those of inland regions else. Especially, for the Yeongdong region, the first peak was directly related to spiral bands generated in front of the typhoon. Convective cells that were developed within the spiral bands moved to the eastern coastal area from the sea so that local heavy rainfall occurred in the Yeongdong region. The second peak was mainly related to the accompanying rain band of typhoon itself, topographic effect and the convergence near Gangneung area. Precipitation in Gangneung was simulated as much as about 30% of observed one. The main reason of this result came from a poor representation of wind directions in Gangneung area of WRF model. Observed wind direction was northwesterly but simulated one was nearly easterly in the area. This might shift a local heavy rainfall area downstream to the mountain area rather than the coastal area.

Quantification of future climate uncertainty over South Korea using eather generator and GCM

  • Tanveer, Muhammad Ejaz;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.154-154
    • /
    • 2018
  • To interpret the climate projections for the future as well as present, recognition of the consequences of the climate internal variability and quantification its uncertainty play a vital role. The Korean Peninsula belongs to the Far East Asian Monsoon region and its rainfall characteristics are very complex from time and space perspective. Its internal variability is expected to be large, but this variability has not been completely investigated to date especially using models of high temporal resolutions. Due to coarse spatial and temporal resolutions of General Circulation Models (GCM) projections, several studies adopted dynamic and statistical downscaling approaches to infer meterological forcing from climate change projections at local spatial scales and fine temporal resolutions. In this study, stochastic downscaling methodology was adopted to downscale daily GCM resolutions to hourly time scale using an hourly weather generator, the Advanced WEather GENerator (AWE-GEN). After extracting factors of change from the GCM realizations, these were applied to the climatic statistics inferred from historical observations to re-evaluate parameters of the weather generator. The re-parameterized generator yields hourly time series which can be considered to be representative of future climate conditions. Further, 30 ensemble members of hourly precipitation were generated for each selected station to quantify uncertainty. Spatial map was generated to visualize as separated zones formed through K-means cluster algorithm which region is more inconsistent as compared to the climatological norm or in which region the probability of occurrence of the extremes event is high. The results showed that the stations located near the coastal regions are more uncertain as compared to inland regions. Such information will be ultimately helpful for planning future adaptation and mitigation measures against extreme events.

  • PDF