• 제목/요약/키워드: Hotel Demand Forecasting

검색결과 8건 처리시간 0.011초

단변량 시계열모형을 이용한 식음료 수요예측에 관한 연구 - 서울소재 특1급 H호텔 사례를 중심으로 - (Forecasting Demand for Food & Beverage by Using Univariate Time Series Models: - Whit a focus on hotel H in Seoul -)

  • 김석출;최수근
    • 한국조리학회지
    • /
    • 제5권1호
    • /
    • pp.89-101
    • /
    • 1999
  • This study attempts to identify the most accurate quantitative forecasting technique for measuring the future level of demand for food & beverage in super deluxe hotel in Seoul, which will subsequently lead to determining the optimal level of purchasing food & beverage. This study, in detail, examines the food purchasing system of H hotel, reviews three rigorous univariate time series models and identify the most accurate forecasting technique. The monthly data ranging from January 1990 to December 1997 (96 observations) were used for the empirical analysis and the 1998 data were left for the comparison with the ex post forecast results. In order to measure the accuracy, MAPE, MAD and RMSE were used as criteria. In this study, Box-Jenkins model was turned out to be the most accurate technique for forecasting hotel food & beverage demand among selected models generating 3.8% forecast error in average.

  • PDF

호텔 수요 예측을 위한 전역/지역 모델을 선택적으로 활용하는 시계열 예측 모델 (A Time Series Forecasting Model with the Option to Choose between Global and Clustered Local Models for Hotel Demand Forecasting)

  • 박기현;정경호;안현철
    • 한국빅데이터학회지
    • /
    • 제9권1호
    • /
    • pp.31-47
    • /
    • 2024
  • 인공지능 기술의 발전으로 인해 여행 및 호텔 산업에서도 다양한 목적의 인공지능과 기계학습 기법이 활용되고 있다. 특히 관광 산업에서는 수요 예측이 매우 중요한 요소로 인식되는데, 이는 서비스 효율성과 수익 극대화에 직접적인 영향을 미치기 때문이다. 수요 예측 시 시간에 따라 변화하는 데이터 흐름을 고려해야 하며, 이를 위해 통계적 기법과 기계학습 모델이 사용된다. 최근에는 수요 예측 데이터의 다양성과 현실의 복잡성을 반영하고자 기존 모델의 변형과 통합 연구가 진행되고 있으며, 그 결과 불확실성과 변동성에 대한 예측 성능이 향상되었음이 보고되고 있다. 본 연구에서는 기존 호텔수요 예측 연구에서 시도되지 않았던 다양한 기계학습 접근법을 통합하여 호텔 판매 수요 예측 정확도를 높이는 새로운 모델을 제안한다. 구체적으로 DTW K-means 클러스터링을 통해 지역모델을 구축하고, 전체 데이터를 활용한 전역모델과 선택적으로 결합하는 XGBoost 기반 시계열 예측 모델을 제시한다. 제안 모델은 지역과 전역 모델의 장점을 살려 호텔 수요 예측 성능을 제고할 것으로 기대된다. 이는 호텔 및 여행 산업 성장에 기여할 뿐만 아니라, 향후 다른 경영 분야 예측에도 확장 적용될 수 있을 것이다.

A Temporal Convolutional Network for Hotel Demand Prediction Based on NSGA3 Feature Selection

  • Keehyun Park;Gyeongho Jung;Hyunchul Ahn
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권10호
    • /
    • pp.121-128
    • /
    • 2024
  • 수요 예측은 관광 산업에서 수익 관리의 중요한 요소이다. 2010년대 이후 관광 산업의 세계화와 SNS와 같은 다양한 형태의 마케팅 및 정보 공유가 증가함에 따라 비선형 활동과 비정형 정보로 인해 예측이 어려워졌다. 이러한 문제를 해결하기 위한 다양한 예측 모델이 연구되었으며, 기계 학습(ML) 모델이 효과적으로 사용되었다. 본 연구에서는 특징 선택 기법(NSGA3)을 시계열 모델에 적용하고 성능을 비교하였다. 호텔 수요 예측에서 TCN 모델은 MAPE 9.73%로, 특징 선택을 적용하지 않았을 때보다 7.05% 성능이 향상된 높은 예측 성능을 보였다. 본 연구 결과는 향상된 예측 성능을 통해 의사결정 지원에 유용할 것으로 기대된다.

제주지역 호텔이용률에 영향을 미치는 결정요인 분석 (Analysis on the Determinants of Hotel Occupancy Rate in Jeju Island)

  • 류강민;송기욱
    • 토지주택연구
    • /
    • 제9권4호
    • /
    • pp.10-18
    • /
    • 2018
  • As the volatility increasement of the number of tourist, there was been controversy over supply-demand imbalance in hotel market. The purpose of this study is to analysis on determinants of hotel occupancy rate in Jeju Island. The quantitative method is based on cointegrating regression, using an empirical dataset with hotel from 2000 to 2017. The primary results of research is briefly summarized as follows; First, there are high relationship between total hotel occupancy rate and hotel occupancy of foreign tourist. The volatility of hotel occupancy is caused by foreigner user than local tourists though local tourist high propotion of hotel occupancy in Jeju Island. Second, hotel occupancy of local tourist has not relationship with demand and supply variables. Because some hotel users are not local tourists but local resident, and effects to other variables of hotel consumer trend, accommodation such as Guest house, Airbnb. Third, there are high relationship between foreign hotel occupancy rate and demand-supply variables. These research imply that total management of supply-demand is very important to seek stability of hotel occupancy rate in Jeju Island. Also it can provide a useful solution regarding mismatch problem between supply-demand as well as development the systematic forecasting model for hotel market participants.

호텔 객실판매 예측에 관한 실증적 연구 - 서울지역 특급호텔을 중심으로 - (Empirical Study on the Forecasting of the Hotel Room Sales)

  • 한승엽
    • 산학경영연구
    • /
    • 제4권
    • /
    • pp.281-295
    • /
    • 1991
  • Nothing is more incorrect than forecasting. Nevertheless, forecasting is one of the most important business activities for the effective management. There has been rapid changes of the growth rate in every respect of the Korean hospitaity industry, especially the hotel industry, before and after the 88 Olympic Games. Therefore, the hoteliers shall be in need of more-than-ever accourate demand forecasting for the more systematic management and control. Under the above circumstances, this study suggested the best forecasting technique and method for the better sales and operations of the hotel rooms. The number of rooms sold is selected as a dependent variable of this study which is regarded as the best representative factor of measuring the growth rate of the rooms division performance of the hotels. The first step was to select the most verifiable independent variable diferently from the other countries or other areas of Korea. As a result, the number of foreign visitors was chosen. Empirical research, i.e. correlation and multiple regression analysis, shows that this independent variable has a strong relationship with the dependent variable told above. The second procedure was to estimate the number of rooms will be sold in 1991 on the basis of the formula calculated through the multiple regression analysis. Time series technique was conducted using the data of the number of foreign visitors by purpose of travel from 1987 to 1990. For the more correct forecasting, however, it would be desirable to adopt the data from 1989 considering the product or the industry life cycle. In addition, deeper analysis for the monthly or seasonal forecasting method is needed as a future research.

  • PDF

Development of Outbound Tourism Forecasting Models in Korea

  • Yoon, Ji-Hwan;Lee, Jung Seung;Yoon, Kyung Seon
    • Journal of Information Technology Applications and Management
    • /
    • 제21권1호
    • /
    • pp.177-184
    • /
    • 2014
  • This research analyzes the effects of factors on the demands for outbound to the countries such as Japan, China, the United States of America, Thailand, Philippines, Hong Kong, Singapore and Australia, the countries preferred by many Koreans. The factors for this research are (1) economic variables such as Korea Composite Stock Price Index (KOSPI), which could have influences on outbound tourism and exchange rate and (2) unpredictable events such as diseases, financial crisis and terrors. Regression analysis was used to identify relationship based on the monthly data from January 2001 to December 2010. The results of the analysis show that both exchange rate and KOSPI have impacts on the demands for outbound travel. In the case of travels to the United States of America and Philippines, Korean tourists usually have particular purposes such as studying, visiting relatives, playing golf or honeymoon, thus they are less influenced by the exchange rate. Moreover, Korean tourists tend not to visit particular locations for some time when shock reaction happens. As the demands for outbound travels are different from country to country accompanied by economic variables and shock variables, differentiated measure to should be considered to come close to the target numbers of tourists by switching as well as creating the demands. For further study we plan to build outbound tourism forecasting models using Artificial Neural Networks.

시계열 모형을 이용한 KTX 여객 수요예측 연구 (A Study on Demand Forecasting for KTX Passengers by using Time Series Models)

  • 김인주;손흥구;김삼용
    • 응용통계연구
    • /
    • 제27권7호
    • /
    • pp.1257-1268
    • /
    • 2014
  • KTX에 등장에 따라 국내 여객시장은 KTX 시장을 중심으로 변화가 이루어졌다. 이에 따라 KTX 이용 여객의 수요예측은 열차 운영에 있어서 매우 중대한 사안이다. 본 논문에서는 여러 시계열 모형의 비교를 통해 KTX 이용 여객의 수요와 연관이 있는 요일과 공휴일, 명절을 어떠한 형태로 고려할 것인지 연구하였다. 모형 간 예측력을 비교하기 위하여 Mean Absolute Percentage Errors (MAPE)를 사용하였으며, 1달간의 단기간 예측에 있어서 변동성을 고려해줄 수 있는 Reg-AR-GARCH 모형이 우수한 예측력을 나타냈으며, 1달을 초과한 기간의 예측에서는 Reg-ARMA 모형이 우수한 예측력을 나타냈다.

리조트 교차판매 예측모형 개발 및 SHAP을 이용한 해석 (Development of a Resort's Cross-selling Prediction Model and Its Interpretation using SHAP)

  • 강보람;안현철
    • 한국빅데이터학회지
    • /
    • 제7권2호
    • /
    • pp.195-204
    • /
    • 2022
  • 관광산업은 최근 코로나19 유행으로 인해 위기에 봉착해 있으며, 이를 극복하기 위해 무엇보다 수익성 개선이 매우 중요한 상황이다. 이 때 여행 수요 자체가 축소된 코로나19와 같은 상황에서는 수익 증대를 위해 객실 점유율을 높이기 위한 공격적인 영업전략보다 어려운 여건 속에서도 찾아온 고객에게 객실 외 추가상품을 판매하여 객단가를 높이는 방향이 더 효율적일 것이다. 국내 관광 연구 분야에서 머신러닝 기법은 수요예측을 중심으로 연구된 바 있으나 교차판매 예측에 대해서는 연구된 바가 거의 없다. 또한 넓은 의미로는 호텔과 같은 숙박업종 이지만 회원제 중심으로 운영하며 숙박과 취사에 적합한 시설을 갖추고 있는 리조트 업종에 특화된 연구는 더욱이 전무한 실정이다. 이에 본 연구에서는 실제 리조트 회사의 투숙 데이터로 다양한 머신러닝 기법을 활용하여 교차판매 예측 모형을 제안하고자 한다. 또한 설명가능한 인공지능(eXplainable AI) 기법을 적용해 교차판매에 영향을 미치는 요인이 무엇인지 해석하고 어떻게 영향을 미치는지 실증 분석을 통해 확인해 보고자 한다.