This study attempts to identify the most accurate quantitative forecasting technique for measuring the future level of demand for food & beverage in super deluxe hotel in Seoul, which will subsequently lead to determining the optimal level of purchasing food & beverage. This study, in detail, examines the food purchasing system of H hotel, reviews three rigorous univariate time series models and identify the most accurate forecasting technique. The monthly data ranging from January 1990 to December 1997 (96 observations) were used for the empirical analysis and the 1998 data were left for the comparison with the ex post forecast results. In order to measure the accuracy, MAPE, MAD and RMSE were used as criteria. In this study, Box-Jenkins model was turned out to be the most accurate technique for forecasting hotel food & beverage demand among selected models generating 3.8% forecast error in average.
인공지능 기술의 발전으로 인해 여행 및 호텔 산업에서도 다양한 목적의 인공지능과 기계학습 기법이 활용되고 있다. 특히 관광 산업에서는 수요 예측이 매우 중요한 요소로 인식되는데, 이는 서비스 효율성과 수익 극대화에 직접적인 영향을 미치기 때문이다. 수요 예측 시 시간에 따라 변화하는 데이터 흐름을 고려해야 하며, 이를 위해 통계적 기법과 기계학습 모델이 사용된다. 최근에는 수요 예측 데이터의 다양성과 현실의 복잡성을 반영하고자 기존 모델의 변형과 통합 연구가 진행되고 있으며, 그 결과 불확실성과 변동성에 대한 예측 성능이 향상되었음이 보고되고 있다. 본 연구에서는 기존 호텔수요 예측 연구에서 시도되지 않았던 다양한 기계학습 접근법을 통합하여 호텔 판매 수요 예측 정확도를 높이는 새로운 모델을 제안한다. 구체적으로 DTW K-means 클러스터링을 통해 지역모델을 구축하고, 전체 데이터를 활용한 전역모델과 선택적으로 결합하는 XGBoost 기반 시계열 예측 모델을 제시한다. 제안 모델은 지역과 전역 모델의 장점을 살려 호텔 수요 예측 성능을 제고할 것으로 기대된다. 이는 호텔 및 여행 산업 성장에 기여할 뿐만 아니라, 향후 다른 경영 분야 예측에도 확장 적용될 수 있을 것이다.
수요 예측은 관광 산업에서 수익 관리의 중요한 요소이다. 2010년대 이후 관광 산업의 세계화와 SNS와 같은 다양한 형태의 마케팅 및 정보 공유가 증가함에 따라 비선형 활동과 비정형 정보로 인해 예측이 어려워졌다. 이러한 문제를 해결하기 위한 다양한 예측 모델이 연구되었으며, 기계 학습(ML) 모델이 효과적으로 사용되었다. 본 연구에서는 특징 선택 기법(NSGA3)을 시계열 모델에 적용하고 성능을 비교하였다. 호텔 수요 예측에서 TCN 모델은 MAPE 9.73%로, 특징 선택을 적용하지 않았을 때보다 7.05% 성능이 향상된 높은 예측 성능을 보였다. 본 연구 결과는 향상된 예측 성능을 통해 의사결정 지원에 유용할 것으로 기대된다.
As the volatility increasement of the number of tourist, there was been controversy over supply-demand imbalance in hotel market. The purpose of this study is to analysis on determinants of hotel occupancy rate in Jeju Island. The quantitative method is based on cointegrating regression, using an empirical dataset with hotel from 2000 to 2017. The primary results of research is briefly summarized as follows; First, there are high relationship between total hotel occupancy rate and hotel occupancy of foreign tourist. The volatility of hotel occupancy is caused by foreigner user than local tourists though local tourist high propotion of hotel occupancy in Jeju Island. Second, hotel occupancy of local tourist has not relationship with demand and supply variables. Because some hotel users are not local tourists but local resident, and effects to other variables of hotel consumer trend, accommodation such as Guest house, Airbnb. Third, there are high relationship between foreign hotel occupancy rate and demand-supply variables. These research imply that total management of supply-demand is very important to seek stability of hotel occupancy rate in Jeju Island. Also it can provide a useful solution regarding mismatch problem between supply-demand as well as development the systematic forecasting model for hotel market participants.
Nothing is more incorrect than forecasting. Nevertheless, forecasting is one of the most important business activities for the effective management. There has been rapid changes of the growth rate in every respect of the Korean hospitaity industry, especially the hotel industry, before and after the 88 Olympic Games. Therefore, the hoteliers shall be in need of more-than-ever accourate demand forecasting for the more systematic management and control. Under the above circumstances, this study suggested the best forecasting technique and method for the better sales and operations of the hotel rooms. The number of rooms sold is selected as a dependent variable of this study which is regarded as the best representative factor of measuring the growth rate of the rooms division performance of the hotels. The first step was to select the most verifiable independent variable diferently from the other countries or other areas of Korea. As a result, the number of foreign visitors was chosen. Empirical research, i.e. correlation and multiple regression analysis, shows that this independent variable has a strong relationship with the dependent variable told above. The second procedure was to estimate the number of rooms will be sold in 1991 on the basis of the formula calculated through the multiple regression analysis. Time series technique was conducted using the data of the number of foreign visitors by purpose of travel from 1987 to 1990. For the more correct forecasting, however, it would be desirable to adopt the data from 1989 considering the product or the industry life cycle. In addition, deeper analysis for the monthly or seasonal forecasting method is needed as a future research.
Journal of Information Technology Applications and Management
/
제21권1호
/
pp.177-184
/
2014
This research analyzes the effects of factors on the demands for outbound to the countries such as Japan, China, the United States of America, Thailand, Philippines, Hong Kong, Singapore and Australia, the countries preferred by many Koreans. The factors for this research are (1) economic variables such as Korea Composite Stock Price Index (KOSPI), which could have influences on outbound tourism and exchange rate and (2) unpredictable events such as diseases, financial crisis and terrors. Regression analysis was used to identify relationship based on the monthly data from January 2001 to December 2010. The results of the analysis show that both exchange rate and KOSPI have impacts on the demands for outbound travel. In the case of travels to the United States of America and Philippines, Korean tourists usually have particular purposes such as studying, visiting relatives, playing golf or honeymoon, thus they are less influenced by the exchange rate. Moreover, Korean tourists tend not to visit particular locations for some time when shock reaction happens. As the demands for outbound travels are different from country to country accompanied by economic variables and shock variables, differentiated measure to should be considered to come close to the target numbers of tourists by switching as well as creating the demands. For further study we plan to build outbound tourism forecasting models using Artificial Neural Networks.
KTX에 등장에 따라 국내 여객시장은 KTX 시장을 중심으로 변화가 이루어졌다. 이에 따라 KTX 이용 여객의 수요예측은 열차 운영에 있어서 매우 중대한 사안이다. 본 논문에서는 여러 시계열 모형의 비교를 통해 KTX 이용 여객의 수요와 연관이 있는 요일과 공휴일, 명절을 어떠한 형태로 고려할 것인지 연구하였다. 모형 간 예측력을 비교하기 위하여 Mean Absolute Percentage Errors (MAPE)를 사용하였으며, 1달간의 단기간 예측에 있어서 변동성을 고려해줄 수 있는 Reg-AR-GARCH 모형이 우수한 예측력을 나타냈으며, 1달을 초과한 기간의 예측에서는 Reg-ARMA 모형이 우수한 예측력을 나타냈다.
관광산업은 최근 코로나19 유행으로 인해 위기에 봉착해 있으며, 이를 극복하기 위해 무엇보다 수익성 개선이 매우 중요한 상황이다. 이 때 여행 수요 자체가 축소된 코로나19와 같은 상황에서는 수익 증대를 위해 객실 점유율을 높이기 위한 공격적인 영업전략보다 어려운 여건 속에서도 찾아온 고객에게 객실 외 추가상품을 판매하여 객단가를 높이는 방향이 더 효율적일 것이다. 국내 관광 연구 분야에서 머신러닝 기법은 수요예측을 중심으로 연구된 바 있으나 교차판매 예측에 대해서는 연구된 바가 거의 없다. 또한 넓은 의미로는 호텔과 같은 숙박업종 이지만 회원제 중심으로 운영하며 숙박과 취사에 적합한 시설을 갖추고 있는 리조트 업종에 특화된 연구는 더욱이 전무한 실정이다. 이에 본 연구에서는 실제 리조트 회사의 투숙 데이터로 다양한 머신러닝 기법을 활용하여 교차판매 예측 모형을 제안하고자 한다. 또한 설명가능한 인공지능(eXplainable AI) 기법을 적용해 교차판매에 영향을 미치는 요인이 무엇인지 해석하고 어떻게 영향을 미치는지 실증 분석을 통해 확인해 보고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.