• Title/Summary/Keyword: Hot-water temperature

검색결과 1,033건 처리시간 0.026초

응축폐열을 이용한 건조 및 온수장치에 관한 연구 (A Study on The Drying and Hot Water System Using Condensation Waste Heat)

  • 박노현;고하영;정진웅;강통삼
    • 대한설비공학회지:설비저널
    • /
    • 제15권4호
    • /
    • pp.362-371
    • /
    • 1986
  • In the normal Refrigeration process, the condensation heat of refrigerant s not been used because of its low-temperature waste heat. To recover the condensation waste heat of R-12 refrigerator, a drying and hot water system was designed and experimented. The results obtained were summarized as follows: 1. As the temperature a temosphere was increased, the temperature of discharge gas of compressor was increased. And the temperature was $80-84^{\circ}C$ for air condensing type and was $68-71^{\circ}C$ for water condensing type during summer. 2. The condensation waste heat could be obtained up to $50-55^{\circ}C$ of drying heat-source and Hot water in summer. In this case, recovered rate was about $73\%$. And the more temperature of drying Heat-source and Hot water were increased, the more a recovered rate were decreased. 3. When comparing drying characteristics of Agro-products in dryer of waste heat utilization and Hot air, there was no quality difference in products. But drying time of the former was 3 Hours longer than the latter. 4. The condensation waste heat of compressor could be applied into the drying of marine products, the predrying of agro-products and making hot water. And showed high possibility of the waste heat using in low-temperature storage.

  • PDF

온수 추출과정 동안 축열조 내의 열성층 특성 및 온수 이용률에 관한 연구 (A Study on Thermal Stratification Characteristics and Useful Rate of Hot Water in Thermal Storage Tank during Hot Water Extraction Process)

  • 장영근;박정원
    • 설비공학논문집
    • /
    • 제14권6호
    • /
    • pp.503-511
    • /
    • 2002
  • Heat flow characteristics during hot water extraction process was studied experimentally. Data were taken at various outlet port type for the fixed inlet port type, inlet-outlet temperature differences and mass flow rates. In this study, the temperature distribution in a storage tank and an outlet temperature were measured to predict a degree of stratification in the storage tank, and a useful rate of hot water was analysed with respect to the variables dominating a extraction process. Experimental results show that the degree of stratification and useful rate of hot water are all high in a low flow rate in case of using modified distributor I (MDI) as the outlet port type.

소형 황토 찜질방의 온수유량 변화에 대한 온도분포 특성 (Temperature Distribution Characteristics for Changes in Hot Water Flow in A Small Ocher Jjimjilbang)

  • 조동현
    • 한국기계가공학회지
    • /
    • 제19권7호
    • /
    • pp.74-80
    • /
    • 2020
  • The ocher jjimjilbang for a single-person household that will be studied in this study is 2.1 ㎡ in size, and this study was conducted to implement well-being room heating that is beneficial to health by supplying radiant heat provided by hot water during room heating by embedding hot water panels in the walls of the ocher jjimjilbang to configure a hot water circulating system. In addition, the ocher bed and the ocher walls, which have been verified through many study findings and reference materials, were constructed so that the living life with a bed and the ocher jjimjilbang would be implemented simultaneously. As the mass flow rate of the hot water increased, the magnitude of the wall temperature rise thanks to the hot water increased, and as the flow rate of the hot water increased, the transfer rate of the heat transferred from the wall of the ocher jjimjilbang to the air inside the wall of the ocher jjimjilbang increased.

냉수가 수평유입되는 열저장탱크의 중간 경계면 부근에서의 열성층 효과 (Thermal Stratification Effects Near an Interface by Horizontal Inflow of Cold Water in Thermal Storage Tank)

  • 황성일;박이동
    • 태양에너지
    • /
    • 제8권2호
    • /
    • pp.46-56
    • /
    • 1988
  • This investigation concerns thermal stratification of the water due to the temperature difference (${\Delta}T=T_{\infty}-T_i$) between the mean temperature of the water in the test tank (1m wide, 1m high, 2.1m long) and the temperature of the inflow water into the tank; flow rate of circulating water and height of the sink diffuser in the test tank. The additional objectives was to observe a stratification phenomena near an interface by measuring the velosities and the temperature difference and investigate an availabilities of the better effective hot water through establishing thermocline near an interface around the bottom of the tank. Following results were obtained through the experiments. 1. When the flow rate was constant and the temperature difference (${\Delta}T=T_{\infty}-T_i$) between the mean temperature of the flow in the test tank and the temperature of the inflow water increased by 5.6, 9.5, 13.5($^{\circ}C$), obtained the better effective advantage of hot water and the stress near an interface increased gradually. 2. When the ${\Delta}T=T_{\infty}-T_i$ was constant and flow rate increased by 4.0, 4.8, 6.4, 8.0 (LPM), obtained the better effective advent age of hot water and the mean stress near an interface increased gradually. 3. When the height of the sink diffuser was 25cm from tank bottom in comparison with 50cm, obtained the better effective advantage of hot water and the mean stress near an interface increased.

  • PDF

원형수직 충돌 수분류에 의한 고온강판의 냉각특성 연구 (Cooling Characteristics of a Hot Steel Plate by a Circular Impinging Liquid Jet)

  • 오승묵;이상준
    • 대한기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.1150-1155
    • /
    • 1992
  • 본 연구에서는 제철소 열연공정의 냉각효율 개선을 위한 기초연구로 수행되었 다. 전열면의 초기온도가 900.deg. C이상일 때 층류 냉각방식에 의한 고온강판의 냉각특 성에 영향을 주는 모든 인자를 엄밀히 고려하는 것은 매우 어려운 일이다.따라서 본 연구에서는 노즐과 고온면 사이 거리(L), 유량(Q), 냉각 초기온도 등을 실제 작업 조건에 가깝게 변화시켜 가면서 수냉반경의 변화를 중심으로 전열면의 냉각 특성을 해 석하였다.

우리나라 온천의 온도 및 성분 특징 (Temperature and Compositional Characteristics of the Hot Spring Water in Korea)

  • 이철우
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.121.1-121.1
    • /
    • 2010
  • We analyzed the temperature and chemical composition of 376 hot springs in Korea. It took about three days for the temperature to stabilize after the pumping test. After the stabilization, in-situ and laboratory analyses of the hot spring water were carried out. The average temperature and TDS were $29.95^{\circ}C$ and 2,071mg/L, respectively. The temperature ranging $25-30^{\circ}C$ were recorded from 70% of hot springs, and $30-35^{\circ}C$ of 15.4%. The maximum temperature was about $78^{\circ}C$. The value of TDS in 79% of the wells was below 1,000 mg/L. 5.5% of the wells, mostly developed near seashore, shows higher values than 10,000mg/L of TDS suggesting the influence of seawater. The hot spring water shows 8.49 of pH representing a weak alkali. For the mineral compositions dissolved in the hot spring in Korea, Na (431 mg/L) and Ca (188 mg/L) are the major cations, and Cl (840 mg/L) and $SO_4$ (213 mg/L) are the major anions.

  • PDF

온양온천수를 이용한 피부개선 화장품의 개발 (The Study of Development Skin Improvement Cosmetic By Spring Water of Onyang)

  • 심승보;오성근;전용진
    • 한국산학기술학회논문지
    • /
    • 제12권9호
    • /
    • pp.4257-4260
    • /
    • 2011
  • 온천수는 땅 표면에 자연 용출되거나 인공적으로 시추하여 끌어올린 지하수로서 수온이 그 지역의 연평균 기온 또는 그 지역의 얕은 지층의 지하수 수온보다 높아야 한다. 우리나라는 섭씨 25도 이상을 온천으로 규정하고 있다. 온천수는 일반적으로 혈액순환, 진통완화, 진정작용, 피부미용에 효과가 있는 것으로 널리 알려져 있으며 이것의 효능은 일반적으로 수온과 물속에 포함되어 있는 다양한 미네랄 성분의(Na, Si, Mg 등) 작용으로 알려져 있다. 온양 온천은 우리나라에서 가장 오래된 온천지구로 우리나라의 가장 대표적인 온천중에 하나이다. 본 연구에서는 온천수를 화장품 제형에 적용하여 피부자극테스트를 통하여 피부자극이 없는 것으로 나타났으며, 온양온천수를 이용한 제품에서 8.56%의 경피 수분함유량의 증가와 -67.74%의 상대 경피 수분증발량 감소가 나타나 온양온천수를 활용한 화장품의 피부개선 효과가 나타나는 것을 알 수 있었다.

인버터시스템 적용 지역난방 시스템의 2차측 공급수 온도 제어방안에 따른 에너지사용량 실증 비교 (Actual Energy Consumption Analysis of Temperature Control Strategies for Secondary Side Hot Water District Heating System with an Inverter)

  • 조성환;홍성기
    • 설비공학논문집
    • /
    • 제27권4호
    • /
    • pp.179-186
    • /
    • 2015
  • In this study, the actual energy consumption of the secondary side District Heating System (DHS) with different hot water supply temperature control methods is compared. The two methods are Outdoor Temperature Reset Control and Outdoor Temperature Predictive Control. While Outdoor Temperature Reset Control has been widely used for energy savings of the secondary side system, the results show that the Outdoor Temperature Predictive Control method saves more energy. In general, the Outdoor Temperature Predictive Control method lowers the supply temperature of hot water, and it reduces standby losses and increases the overall heat transfer value of heated spaces due to more flow into the space. During actual energy consumption monitoring, the Outdoor Temperature predictive Control method saves about 6.6% of energy when compared to the Outdoor Temperature Reset Control method. Also, it is found that at partial load condition, such as during daytime, the fluctuation of hot water supply temperature with Outdoor Temperature Reset Control is more severe than that with Outdoor Temperature Predictive Control. Thus, it proves that Outdoor Temperature Predictive Control is more stable even at partial load conditions.

저온 폐열 회수를 위한 제1종 흡수식 열펌프의 컴퓨터 시뮬레이션 (Computer Simulation of an Absorption Heat Pump for Recovering Low Grade Waste Heat)

  • 강상우;강병하;정시영;이춘식
    • 설비공학논문집
    • /
    • 제8권2호
    • /
    • pp.187-197
    • /
    • 1996
  • A computer program for thermal design analysis has been developed to predict the operating characteristics and performance of an absorption heat pump to recover $30{\sim}40^{\circ}C$ of waste hot water. The effects of heat transfer area of the system components, temperature and mass flow rate of heat transfer medium, and solution circulation rate on the system performance are investigated in detail. The results obtained indicate that the COP is increased with a decrease in the temperature of driving steam and with an increase in the temperature of waste hot water while the COP is little affected by the variation of a hot water temperature. It is also found that the heating output is increased with an increase in the temperature of waste hot water and driving steam as well as with a decrease in the temperature of hot water. The simulation results are also compared with the experimental results for a periodic operation of the system and obtained a satisfactory agreement.

  • PDF

마이크로터빈의 열회수 성능시험 (Test of Heat Recovery Performance of a Microturbine)

  • 전무성;이종준;김동섭;장세동
    • 대한기계학회논문집B
    • /
    • 제32권8호
    • /
    • pp.629-635
    • /
    • 2008
  • Recently, microturbines have received attention as a small-scale distributed power generator. Since the exhaust gas carries all of the heat release, the microturbine CHP (combined heat and power) system is relatively compact and easy to maintain. Generating hot water or steam is usual method of heat recovery from the microturbine. In this work, a heat recovery unit producing hot water was installed at the exhaust side of a 30 kW class microturbine and its performance characteristics following microturbine power variation was investigated. Heat recovery performance has been compared for different operating conditions such as constant hot water temperature and constant water flow rate. In particular, the influence of water flow rate and hot water temperature on the recovered heat was analyzed.