• 제목/요약/키워드: Hot-water heating system

검색결과 324건 처리시간 0.023초

호텔, 병원, 업무용 건물의 에너지 부하 특성 비교 (Comparison of Energy Demand Characteristics for Hotel, Hospital, and Office Buildings in Korea)

  • 박화춘;정모
    • 설비공학논문집
    • /
    • 제21권10호
    • /
    • pp.553-558
    • /
    • 2009
  • Energy demand characteristics of hotel, hospital, and office building are compared to provide guidelines for combining building in community energy system design. The annual, monthly, and daily energy demand patterns for electricity, heating, hot water and cooling are qualitatively compared and important features are delineated based on the energy demand models. Key statistical values such as the mean, the maximum are also provided. Important features of the hourly demand patterns are summarized for weekdays and weekends. Substantial variations in both magnitudes and patterns are observed among the 3 building types and smart grouping or combination of building type and size is essential for a successive energy supply.

히트 파이프를 이용한 열경화성 나노임프린트 장비용 열판의 온도 균일도 향상 (Improvement of Temperature Uniformity in a Hot Plate for Thermal Nanoimprint Lithography by Installing Heat Pipes)

  • 박규진;양진오;이재종;곽호상
    • 반도체디스플레이기술학회지
    • /
    • 제15권2호
    • /
    • pp.74-80
    • /
    • 2016
  • This study presents a thermal device specially designed for thermal nanoimprint lithography equipments, which requires the capability of rapid heating and cooling, high temperature uniformity and the material strength to endure high stamping pressure. The proposal to meet these requirements is a planar-type hot plate extensible to a large area, in which long circular cartridge heaters and heat pipes are installed inside in parallel. The heat pipes are connected to the outside water cooling chamber. A hot plate made of stainless steel is fabricated with a dimension $240mm{\times}240mm{\times}20mm$. Laboratory experiments are conducted to examine the thermal performance of the hot plate. The results illustrate that the employment of heat pipes leads to a notable enhancement of temperature uniformity in the device and provides an efficient heat delivery from the hot plate to outside. It is verified that the suggested hot plate could be a feasible thermal tool for thermal nanoimprint lithography, satisfying the major design requirements.

복사난방용 유량조절 밸브의 작동특성 연구 (Operating Characteristics of the Flow Control Valve for the Radiant Heating System)

  • 표진수;장춘수;최광석;김윤제
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.552-557
    • /
    • 2007
  • Due to the recent improvement of living standard of residential buildings, the requirements of the thermal comfort and energy saving in heating system have been raised. The radiant floor heating system has been widely used as a residential heating method, which has been modernized to use hot water running into the tubes embedded in the floor structure. The uniform flow distribution is very important factor for a radiant floor heating system such as a blood vessel system in human body. Therefore, it is necessary to investigate the operating characteristics to develop an optimal radiant floor heating system. In this study, numerical analyses were carried out, using a commercial CFD code, FLUENT, to obtain the velocity distribution under steady, three-dimensional, standard k-$\varepsilon$ model and no-slip condition. Results are graphically depicted with various parameters.

  • PDF

유체마찰에너지를 이용한 풍력열발생조의 성능 분석 (Performance Analysis of the Wind Power Heat Generation Drum Using Fluid Frictional Energy)

  • Kim, Yeong-Jung;Yu, Yeong-Seon;Gang, Geum-Chun;Baek, Lee;Yun, Jin-Ha;Lee, Geon-Jung
    • Journal of Biosystems Engineering
    • /
    • 제26권3호
    • /
    • pp.263-270
    • /
    • 2001
  • This study was conducted in order to develop wind-water heating system where frictional heat is creased between the rotor and working fluid when they are rotating in the cylindrical heat generator. The wind-water heating system is composed of rotor, stator, working fluid, motor, inverter and heat generation tank. Instead of wind turbine, we have used an electrical motor of 30㎾ to rotate the rotor in this system. Two working fluids and six levels of rotor rpm were tested to quantify heat amounts generated by the system. Generally, as motor rpm goes up heat amount increases that we have expected. At the same rpm, viscous fluid showed up better performance than the water, generating more heat by 10$\^{C}$ difference. The greatest heat amount of 31,500kJ/h was obtained when the system constantly drained out the hot water of at the flow rate of 500ℓ/h. Power consumption rate of the motor was measured by thee phase electric power meter where the largest power consumption rate was 14㎾ when motor rpm was 600 and gained heat was 31,500kJ/h, that indicated total thermal efficiency of the wind power water heating system was 62%.

  • PDF

공동주택 온수난방 시스템의 적정 열공급을 위한 배관망 시뮬레이션 (Simulation of Pipe Network for Optimum Heat Supply in the Hot Water Heating System of Apartment House)

  • 김주용;민만기;최영돈
    • 설비공학논문집
    • /
    • 제5권3호
    • /
    • pp.157-168
    • /
    • 1993
  • Pipe network of hot water heat supply system in an apartment house was analyzed. Flowrate and supply heat capacity of each household in which constant flowrate balancing valve is installed in a single zone system were calculated and the results were investigated. In the existing piping system, the non-uniformity of heat supply with floors due to the static pressure and temperature difference between supply main and return main can not be avoided and this tendency get intense with the increase of the height of building. The non-uniformity of heat supply can be prevented by the installation of balancing valve at each household, however if the performance of supply pump is not sufficient to overcome the energy loss due to the installation of balancing valve for constant flow rate or if the selection of the valve capacity is not adequate, the valves will may lose their controllability.

  • PDF

바닥복사 난방시스템의 개폐식 제어에 대한 GRNN 적용에 관한 실험적 연구 (A Experimental Study on the Application of GRNN for On-Off Control in Floor Radiant Heating System)

  • 송재엽;안병천
    • 한국지열·수열에너지학회논문집
    • /
    • 제16권4호
    • /
    • pp.16-23
    • /
    • 2020
  • In this study, the control characteristics and effects of control methods on heating performance and energy consumption for the hot water floor radiant heating control system of a residential apartment were research by experiment. As a control method, On-Off control and outdoor reset control methods with GRNN(General Regression Neural Network) and without GRNN are considered. Also, the control performances with regard to improvement of indoor thermal environment and reduction of energy consumption are compared, respectively. Experiment results show that the performance of the control method with GRNN is better than that of conventional on-off control method without GRNN in the responses of room set temperature and energy saving.

지역난방 중온수 펌프의 현장 성능평가를 위한 열역학적 측정법 적용 (Aplication of the Thermodynamic Measurement Method for On-site Performance Evaluation of Hot Water Pumps Used in District Heating)

  • 박철규;유호선
    • 플랜트 저널
    • /
    • 제17권1호
    • /
    • pp.50-57
    • /
    • 2021
  • 수력학적 효율측정 방법만으로는 펌프시스템 부속장치들의 개별효율 및 펌프 자체효율을 명확하게 산출해내기 매우 어렵다. 이에 본 연구에서는 국내 최초로 지역난방 중온수용 펌프시스템에 최신 열역학적 펌프 효율측정방법을 도입, 수력학적 방법과의 효율 병행측정 결과를 검토하였고, 그 결과 기존 수력학적 펌프효율 측정방법만으로는 데이터 불확실성이 높은 반면, 열역학적 및 수력학적 방법 병행측정 데이터를 적용한 펌프 및 유체커플링 효율값은 상호보완적 역할수행에 의해 펌프성능 측정방법의 신뢰성 및 적정성이 검증되는 의미 있는 결과를 도출할 수 있었다. 또한, 지역난방시스템에 열역학적 펌프효율 측정방법을 적용한 결과, 최대 120 ℃ 고온 환경에도 불구, 매우 안정적인 데이터 측정 및 측정장비의 내구성이 검증되는 등 열역학적 측정방법의 신뢰성을 검증할 수 있었다.

PTC태양열 집열기를 이용한 슬러지 열탈수 연구 (Study on Thermal Dewatering of Sludge Using the Parabolic Through Collector(PTC) Solar Collector)

  • 이정언
    • 한국태양에너지학회 논문집
    • /
    • 제34권3호
    • /
    • pp.49-56
    • /
    • 2014
  • A fiat-plate or vacuum tube solar collector have been mainly used for hot water supply of house because of some being difficult to get uniform energy density, so little applied into industrial field. This study is to apply the PTC(parabolic trough collector) solar collector into industrial field such as sludge dewatering system for energy reduction. The real scale system which composed of PTC Solar Collector and Thermal Dewatering (TDW) is established. PTC solar collector is designed to produce a hot water with $80^{\circ}C$ of temperature. And size of TDW is $630{\times}630mm$. Hot water produced from PTC solar collector is supplied into heating plate of TDW, and sludge like waterworks or wastewater is dewatered. PTC solar collector with $10m^2$ of area produce energy of average 5,618 kcal. As according to results from real scale performance, solar collector takes charge 94 % of the amount that TDW consume energy which is so large part if compare with boiler. It means that PTC solar collector is useful to apply industrial field under the condition of sufficient solar radiation. And it is analyzed that TDW by PTC solar collector has an economical validity.

지역난방 적용 태양열시스템의 장기 열성능 분석 (Analysis of Long-term Thermal Performance of Solar Thermal System Connected to District Heating System)

  • 백남춘;신우철
    • 한국태양에너지학회 논문집
    • /
    • 제27권4호
    • /
    • pp.167-173
    • /
    • 2007
  • This study analyzed by simulation using TRNSYS as well as by experiment on the solar district heating system installed for the first time for the district heating system in Bundang. Simulation analysis using TRNSYS focused on the thermal behavior and long-term thermal efficiency of solar system. Experiment carried out for the reliability of simulation system. This solar system where the circuits of two different collectors, flat plate and vacuum tube collector, are connected in series by a collector heat exchanger, and the collection characteristics of each circuit varies. Therefore, these differences must be considered for the system's control. This system uses variable flow rate control in order to obtain always setting temperature of hot water by solar system. Specifically, this is a system that heats returning district heating water (DHW) at approximately $60^{\circ}C$ using a solar collector without a storage tank, up to the setting temperature of approximately $85{\sim}95^{\circ}C$ To realize this, a flat plate collector and a vacuum tube collector are used as separate collector loops. The first heating is performed by a flat plate collector loop and the second by a vacuum tube collector loop. In a gross collector area basis, the mean system efficiency, for 4 years, of a flat plate collector is 33.4% and a vacuum tube collector is 41.2%. The yearly total collection energy is 2,342GJ and really collection energy per unit area ($m^2$) is 1.92GJ and 2.37GJ respectively for the flat plate vacuum tube collector. This result is very important on the share of each collector area in this type of solar district heating system.