• Title/Summary/Keyword: Hot plug detect

Search Result 2, Processing Time 0.02 seconds

A Design of DisplayPort AUX Channel (디스플레이포트 인터페이스의 AUX 채널 설계)

  • Cha, Seong-Bok;Yoon, Kwang-Hee;Kim, Tae-Ho;Kang, Jin-Ku
    • Journal of IKEEE
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • This paper presents an implementation of the DisplayPort AUX(Auxiliary) Channel. DisplayPort uses Main link, AUX Channel and Hot Plug Detect line to transfer the video & audio data. For isochronous transport service, source device converts to image and audio data which are to be transported through the Main Link and transports the restructured image and audio data to sink device. The AUX Channel provides link service and device service for discovering, initializing and maintaining the Main link. Hot Plug Detect line is used to confirm the connection between source device and sink device. The AUX Channel is implemented with 3315 LUTs(Look Up Table), 1466 Flip Flops and 168.782MHz max speed synthesized using Xilinx ISE 9.2i at SoC Master3.

Design of Low Power Optical Channel for DisplayPort Interface (저전력 광채널용 디스플레이포트 인터페이스 설계)

  • Seo, Jun-Hyup;Park, In-Hang;Jang, Hae-Jong;Bae, Gi-Yeol;Kang, Jin-Ku
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.58-63
    • /
    • 2013
  • This paper presents a transceiver design for DisplayPort interface using an optical channel. By converting the electronic channel to the optical channel, the DisplayPort's main channel can provide a high-speed data transmission for long distance. The design converting the electronic channel to the optical channel in the main channel and AUX channel of the DisplayPort is presented in this paper. Futhermore, the HPD signal transmission by using AUX channel is proposed. In order to minimize power consumption, this paper also proposed a method of controlling the TX block in the main link. The proposed system is designed by a FPGA and an optical module. The FPGA used 651 ALUT(adaptive look-up table)s, 511 resisters and 324 block memory bits. The maximum operating rate of the FPGA is 250MHz. With the proposed power control scheme, 740mW of power dissipation reduction can be achieved at the main link optical TX module.