• Title/Summary/Keyword: Hot isostatic pressing(HIP)

Search Result 53, Processing Time 0.028 seconds

Tribological Properties of Ti(C,N)-based Cermet after Hot Isostatic Pressing at High Nitrogen Pressure

  • Xiong, Wei-hao;Zheng, Li-yun;Yan, Xian-mei
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.663-664
    • /
    • 2006
  • Sintered Ti(C,N)-based cermets were treated with hot isostatic pressing (HIP) at different nitrogen pressures. The tribological properties of the treated cermets have been evaluated. The results show that a hard near-surface area rich in TiN formed after HIP treatment. The cermets treated at higher pressure had a relatively lower friction coefficient and specific wear rate. In all cases the microhardness of treated cermets is higher than that without HIP natridation. The wear mechanisms of cermets were hard particle flaking-off and ploughing. It was also found that the HIP natridation is well-suited for improving the tribological properties of cermets.

  • PDF

Analysis of Hot Isostatic Pressing of Powder Compacts Considering Diffusion and Power-Law Creep (확산과 Power- law 크립을 고려한 압분체 열간정수압압축 공정의 해석)

  • Seo M. H.;Kim H. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.66-69
    • /
    • 2000
  • In order to analyze the densification behaviour of stainless steel powder compacts during hot isostatic pressing (HIP) at elevated temperatures, a power-law creep constitutive model based on the plastic deformation theory for porous materials was applied to the densification. Various densification mechanisms including interparticle boundary diffusion, grain boundary diffusion and lattice diffusion mechanisms were incorporated in the constitutive model, as well. The power-law creep model in conjunction with various diffusion models was applied to the HIP process of 316L stainless steel powder compacts under 50 and 100 MPa at 1125 $!`\acute{\dot{E}}$. The results of the calculations were verified using literature data It could be found that the contribution of the diffusional mechanisms is not significant under the current process conditions.

  • PDF

Synthesis of Ni-33.3at%Si Powders by MA and Their Sintering Characteristics (기계적 합금화에 의한 Ni-33.3at%Si 분말의 합성 및 소결 특성)

  • Park, Sang-Bo;Byeon, Chang-Seop;Kim, Dong-Gwan;Lee, Won-Hui
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.745-750
    • /
    • 2001
  • Ni-33.3at%Si elemental powder mixtures were mechanically alloyed by a high-energy ball mill, followed by CIP (cold isostatic pressing) and HIP (hot isostatic pressing) for different processing conditions. Only elemental phases (Ni and Si) were observed for the 15 min mechanically alloyed (MA 15 min) powder. but $Ni_2$Si and elemental phases were observed to coexist for the 30 min mechanically alloyed (MA 30 min) powder. Elemental Ni and $Ni_2$Si phases were observed for the HIPed compact of MA 15 min powder at 100 and 150 MPa for 2 hr at $800^{\circ}C$. Only the $Ni_2$Si phase was, however, observed for the HIPed compacts of MA 30 min powder. For the HIPed compacts, the highest sintered density was obtained to be 99.5% of theoretical density by a HIP step at $1100^{\circ}C$ at 150MPa for 2hr. The hardness values of the HIPed $Ni_2$Si compacts at $1100^{\circ}C$ at 100/150 MPa for 2 hr were higher than HRC 66. The densification and mechanical property of HIPed $Ni_2$Si compacts were found to depend on more HIP temperature than HIP pressure.

  • PDF

The Synthesis of Ti-37.5at%Si Powders by MA and Their Sintering Characteristics (기계적 합금화에 의한 Ti-37.5at%Si 분말의 합성 및 소결 특성)

  • 이상호;변창섭;김동관
    • Journal of Powder Materials
    • /
    • v.8 no.4
    • /
    • pp.223-230
    • /
    • 2001
  • Ti-37.5at%Si elemental powder mixtures were mechanically alloyed by a high-energy ball mill, followed by CIP (cold isostatic pressing) and HIP (hot isostatic pressing) for different processing conditions. Only elemental phases (Ti and Si) were observed for the 5 min mechanically alloyed (MA 5 min) powder, but only $Ti_5Si_3$phase was observed for the 30 min mechanically alloyed (MA 30 min) powder. $Ti_5Si_3$phase was observed for the HIPed compact of MA 5 min and 30 min powders at 150 and 190 MPa for 3 hr at $1000^{\circ}C$. For the HIPed compacts, the highest sintered density was obtained to be 99.5% of theoretical density by a HIP step at $1350^{\circ}C$ at 190MPa for 3hr. The hardness values of the HIPed $Ti_5Si_3$compacts at $1350^{\circ}C$ at 150/190 MPa for 3hr were higher than HRC 76. The densification and mechanical property of HIPed $Ti_5Si_3$compacts was found to depend on more HIP temperature than HIP pressure.

  • PDF

Effects of Hot Isostatic Pressing on the Microstructure and High-Temperature Fatigue Life of the Ni-base Superalloy IN738LC (IN738LC 초내열합금에서 미세조직과 고온 피로수명에 미치는 고온등압압축(HIP) 공정의 영향)

  • Choi, Cheol;Kim, Doo-Soo;Lee, Young-Chan;Park, Young-Kyu;Kim, Gil-Moo;Kim, Jae-Cheol
    • Korean Journal of Materials Research
    • /
    • v.10 no.2
    • /
    • pp.128-137
    • /
    • 2000
  • A study has been made to investigate the effects of hot isostatic pressing(HIPing) on the microstructure and high temperature fatigue lives of the IN738LC, Ni-base superalloy used in turbine blades, with emphasis on the elimination of casting microporosity and fatigue damage through HIP treatments. Microstructure was observed using OM, SEM and the fatigue life was investigated with rotate bending fatigue tester. The results show that the fatigue lives of properly HIP-processed specimens could be extended be extended by a factor of about sixty. In contrast, no comparable life improvement was achieved with heat treatment only. The repetitive HIP treatment was shown to be very effective as a means of rejuvenating the fatigue life of intentionally fatigue-damaged IN738LC by restoration of the initial alloy microstructure and additional removal of fine casting defects which remained in the HIP-processed material.

  • PDF

Sintered Properties and Microstructural Defects of Zirconia Ceramic Implant Fabricated by Injection Molding and Hot Isostatic Pressing (HIP) (사출성형 및 열간가압 소결법으로 제작된 지르코니아 세라믹 임플란트의 소결물성 및 미세구조적 결함)

  • Hyun Jung Park;Jeong Sik Park;Jong Kook Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.4
    • /
    • pp.215-222
    • /
    • 2023
  • 3Y-TZP (3 mol% yttria-stabilized tetragonal zirconia polycrystals, 3Y-TZP) ceramics are emerging as dental implant materials due to their superior optical and mechanical properties as well as excellent biophysical properties, in spite of low bioactivity. In this study, we investigated to sintered properties and microstructural defects of dental zirconia implants fabricated by ceramic injection molding and post-HIP (Hot isostatic pressing) processing and analyzed the processing parameters related with the obtainment of its high sinterd density. Sintered and microstructural parameters, i.e, apparent density, grain size and phase composition of zirconia implants fabricated by injection molding were dependent on the fixtute size and implant type. Maximum sintered density of 99.2% and minimum grain size of 0.3-0.4 ㎛ were obtained from large-scaled 2-body sample. In 1-body ceramic implant, high sintered density of 99.5% was obtained, but it had a little monoclinic phase and wide grain size distribution.

Effect of Hot Isostatic Pressing on the Stellite 6 Alloy prepared by Directed Energy Deposition (DED 적층 제조된 Stellite 6 조성합금의 열간등방압성형 후처리 )

  • Joowon Suh;Jae Hyeon Koh;Young-Bum Chun;Young Do Kim;Jinsung Jang;Suk Hoon Kang;Heung Nam Han
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.152-162
    • /
    • 2024
  • The directed energy deposited (DED) alloys show higher hardness values than the welded alloys due to the finer microstructure following the high cooling rate. However, defects such as microcracks, pores, and the residual stress are remained within the DED alloy. These defects deteriorate the wear behavior so post-processing such as heat treatment and hot isostatic pressing (HIP) are applied to DED alloys to reduce the defects. HIP was chosen in this study because the high pressure and temperature uniformly reduced the defects. The HIP is processed at 1150℃ under 100 MPa for 4 hours. After HIP, microcracks are disappeared and porosity is reduced by 86.9%. Carbides are spherodized due to the interdiffusion of Cr and C between the dendrite and interdendrite region. After HIP, the nanohardness (GPa) of carbides increased from 11.1 to 12, and the Co matrix decreased from 8.8 to 7.9. Vickers hardness (HV) decreased by 18.9 % after HIP. The dislocation density (10-2/m2) decreased from 7.34 to 0.34 and the residual stress (MPa) changed from tensile 79 to a compressive -246 by HIP. This study indicates that HIP is effective in reducing defects, and the HIP DED Stellite 6 exhibits a higher HV than welded Stellite 6.

The Effect of Hot Isostatic Pressing on Mechanical Properties of Cast Aluminum Alloy (주조된 AI 합금의 기계적 성질에 미치는 HIP의 영향)

  • Kim, Gi-Tae;Yang, Hun-Cheol;Choe, Jae-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.461-470
    • /
    • 2002
  • The present paper investigates the effect of hot isostatic pressing (HIPing) on mechanical properties, e.g., tensile strength, ductility and impact absorption energy of sand and die casted aluminum alloys. After HIPing at various temperatures and pressure conditions, uniaxial tensile test and Izod impact test of the samples were carried out. The experimental results showed improvements in uniaxial tensile strength, elongation and Izod impact toughness of sand casted aluminum alloy, while deterioration of a tensile strength fur die casted aluminum alloy. The effect of HIPing for microstructure of the cast aluminum alloy was also investigated.

Estimation of Mechanical Properties of Tungsten-Fiber-Reinforced Ti-MMCs by Hot Isostatic Pressing (HIP 처리 티타늄기 MMC 의 기계적 특성평가)

  • Son, Sun-Young;Nishida, Shin-Ichi;Lee, Jong-Hyung;Kim, Young-Tae;Lee, Do-Kyung;Son, Yong-Jea;Jang, Hyun-Duck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.407-412
    • /
    • 2010
  • The objective of this study is the estimation of the mechanical properties of HIP-treated MMCs by an optimized manufacturing process. The Ti-MMCs were fabricated by HIP and rotary swaging (RS) for secondary processing. The Ti-MMCs with different tungsten fiber contents of 0, 6, 9, and 12 vol% were subjected to tensile tests, fatigue tests, and hardness tests. The results show that the hardness values of Ti-MMCs increased with the increasing volume percent of tungsten fibers, the tensile strength increased by approximately 50% (specific strength: 38%) at the 9 vol%. The value of tungsten-fiber orientation F affects the tensile strength. The fatigue strengths of the Ti-MMCs did not improve. HIP is a useful manufacturing method for Ti-MMCs and RS is an important process for improving fiber orientation during secondary processing.