• Title/Summary/Keyword: Hot gas wind tunnel

Search Result 26, Processing Time 0.018 seconds

Investigation of Heating Performance of Kerosene Fan Heater (석유 홴 히터의 난방 능력 고찰)

  • Kim, Jang-Kweon;Jeong, Kyu-Jo
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.51-60
    • /
    • 1997
  • In this paper, we investigated the heating performance and the basic characteristics required for normal combustion of kerosene fan heater. And also the iso-velocity contours and the iso-temperature contours of hot gas discharged from the exit of kerosene fan heater were analyzed. The experiment was carried out with kerosene fan heater attached to the blow-down-type subsonic wind tunnel with a test section of $240mm{\times}240mm{\times}1200mm$. The purpose of this paper was to obtain the basic data for new design from conventional kerosene fan heater. Consequently it was found that (i) the pressure ratio $P_2/P_1$ had a comparatively constant value of 0.844 according to the increase of the revolution of turbo fan, (ii) the primary excess air ratio had a range of $0.84{\sim}1.11$ during normal combustion, and (iii) the heating performance of kerosene fan heater had a range of $1,494{\sim}3,852kcal/hr$.

  • PDF

Three-Dimensional Flow Characteristics in a Linear Turbine Cascade Passage (선형 터빈 케스케이드 통로에서의 3차원 유동 특성)

  • 차봉준;이상우;이대성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3148-3165
    • /
    • 1993
  • A cascade wind tunnel test for a turbine nozzle, which was designed for a small turbo jet engine in a previous study, has been conducted to evaluate its aerodynamic performance and losses. The large-scale blades were based on the mid-span profile of the nozzle. Oil film flow structure, and then 3-dimensional velocity components were measured in the flow passage with a 5-hold pressure probe, in addition to turbulent intensities at mid-span of cascade exit using a hot-wire anemometer. From this study, 3-dimensional growth of horseshoe and passage vortices in the downstream direction was clearly understood with near-wall flow phenomena. In addition, secondary flow and losses associated with the blade configuration were obtained in detail.

Visualization of Transonic Airfoil Flows in a Shock Tube (충격파관 내 천음속 익형 유동의 가시화)

  • Jang Ho-Keun;Kwon Jin-Kyung;Kim Byung-Ji;Kwon Soon-Bum;Kim Myung-Su
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.68-71
    • /
    • 2004
  • The experiments for NACA airfoils are conducted as the preliminary study for the aerodynamic characteristics of the transonic airfoil flow in the shock tube. The test section configurations were designed to use shock tube as simple and less costly experimental facility generating transonic flow at relatively high Reynolds numbers. Experiments at hot gas Mach numbers of 0.80, 0.82 and 0.84, Reynolds numbers of about $1.2\times10^6$ on airfoil chord length and angle of attack of $0^{\circ}\;and\;2^{\circ}$ were carried out by means of shadowgraph visualization method and static pressure measurements. Visualization results were compared with the corresponding results from the conventional transonic wind tunnel tests. The results of study showed that present shock tube facility is useful to study the proper performance characteristics in transonic Mach number range.

  • PDF

Turbulent Convective Heat Transfer over a Circular Tube Carrying Gas-Liquid Two Phase Flow with Phase Change (상변화를 수반하는 이상류(二相流)가 흐르는 원관 주위에서의 난류 열전달)

  • Yoo S. Y.;Kim Y.;Chung M. K.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.1
    • /
    • pp.74-80
    • /
    • 1987
  • Turbulent convective heat transfer phenomenon which occur around the evaporator section of heat pump were analyzed experimentally. For this purpose a special wind tunnel and a heat pump system were designed and fabricated. Evaporator section was installed perpendicular to air flow direction and part of the evaporator was made of a glass tube for visual observation. The velocity distribution, turbulent intensity and temperature distribution were measured by hot wire technique and thermocouples. An experimental correlation for the convective heat transfer coefficient was obtained and the result is somewhat higher than the value calculated from Hilpert equation. The difference in two equations is believed to be due to the boning effect inside the evaporator tube.

  • PDF

Investigation on the Turbulent Flow Characteristics of a Gun-Type Gas Burner with the Different Shape of Baffle Plate (배플판 형상이 다른 Gun식 가스버너의 난류유동 특성치 고찰)

  • Kim, Jang-Kweon;Jeong, Kyu-Jo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.475-485
    • /
    • 2004
  • This paper was studied to investigate and compare the effects of inclined baffle plate on the turbulent flow characteristics of a gun-type gas burner through X-Y plane and Y-Z plane respectively by using X-probe from hot-wire anemometer system. For this purpose, two burner models with a cone-type baffle plate and a flat-type one respectively were used. The fast jet flow spurted from slits plays a role such as an air-curtain because it encircles rotational flow by swirl vanes and drives mixed main flow to axial direction regardless of the inclination of baffle plate. The inclined baffle plate causes axial mean velocity component and turbulent intensities etc. to be greatly concentrated towards the central part of a burner, and its effect especially appears in the range of about X/R=1.0-2.0. Also, it gives much larger size to axial mean velocity component and turbulent intensities etc formed near the slits in the range of X/R=1.4103. Especially the inclined baffle plate shifts more the Reynolds shear stress uw to the central region of a burner(Y/R=${\pm}$0.75) than the flat-type one, moreover it develops more strongly than uv.

Combustion Characteristics Study using Hyper-mixer in Low-enthalpy Supersonic Flow (하이퍼 혼합기를 사용한 저엔탈피 초음속 유동장 내연소 특성 연구)

  • Kim, Chae-Hyoung;Jeung, In-Seuck
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.75-80
    • /
    • 2013
  • In this study, a forced ignition method with a plasma jet torch is studied in Mach 2 laboratory scaled wind-tunnel. The hyper-mixer is used as a mixer. For two normal injection cases, the one is collided against a wedge plate of the hyper-mixer and the other is directly injected into the cold main flow. For the first case, the hyper-mixer disperses the injected fuel, leading to the mixing enhancement. Furthermore, the fuel-air mixture is provided into the plasma hot gas, which enhances the combustion performance. However, the direct injection into the main flow method spends amount of fuel without ignition in the cold supersonic flow. In the end, for the forced combustion, it is important to supply the fuel-air mixture into the heat source.