• Title/Summary/Keyword: Hot flash

Search Result 115, Processing Time 0.021 seconds

Design of an Efficient FTL Algorithm Exploiting Locality Based on Sector-level Mapping (Locality를 이용한 섹터 매핑 기법의 효율적인 FTL 알고리듬)

  • Hong, Soo-Jin;Hwang, Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7B
    • /
    • pp.818-826
    • /
    • 2011
  • This paper proposes a novel FTL (Flash Translation Layer) algorithm employing sector-level mapping technique based on locality to reduce the number of erase operations in flash memory accesses. Sector-level mapping technique shows higher performance than other mapping techniques, even if it requires a large mapping table. The proposed algorithm reduces the size of mapping table by employing dynamic table update, processes sequential writes by exploiting sequential locality and extracts hot sector in random writes. Experimental results show that the number of erase operations has been reduced by 75.4%, 65.8%, and 10.3% respectively when compared with well-known BAST, FAST and sector mapping algorithms.

Programming Characteristics of the Multi-bit Devices Based on SONOS Structure (SONOS 구조를 갖는 멀티 비트 소자의 프로그래밍 특성)

  • 김주연
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.771-774
    • /
    • 2003
  • In this paper, the programming characteristics of the multi-bit devices based on SONOS structure are investigated. Our devices have been fabricated by 0.35 $\mu\textrm{m}$ complementary metal-oxide-semiconductor (CMOS) process with LOCOS isolation. In order to achieve the multi-bit operation per cell, charges must be locally frapped in the nitride layer above the channel near the source-drain junction. Programming method is selected by Channel Hot Electron (CUE) injection which is available for localized trap in nitride film. To demonstrate CHE injection, substrate current (Isub) and one-shot programming curve are investigated. The multi-bit operation which stores two-bit per cell is investigated. Also, Hot Hole(HH) injection for fast erasing is used. The fabricated SONOS devices have ultra-thinner gate dielectrics and then have lower programming voltage, simpler process and better scalability compared to any other multi-bit storage Flash memory. Our programming characteristics are shown to be the most promising for the multi-bit flash memory.

Improved Hot data verification considering the continuity and frequency of data update requests (데이터 갱신요청의 연속성과 빈도를 고려한 개선된 핫 데이터 검증기법)

  • Lee, Seungwoo
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.5
    • /
    • pp.33-39
    • /
    • 2022
  • A storage device used in the mobile computing field should have low power, light weight, durability, etc., and should be able to effectively store and manage large-capacity data generated by users. NAND flash memory is mainly used as a storage device in the field of mobile computing. Due to the structural characteristics of NAND flash memory, it is impossible to overwrite in place when a data update request is made, so it can be solved by accurately separating requests that frequently request data update and requests that do not, and storing and managing them in each block. The classification method for such a data update request is called a hot data identification method, and various studies have been conducted at present. This paper continuously records the occurrence of data update requests using a counting filter for more accurate hot data validation, and also verifies hot data by considering how often the requested update requests occur during a specific time.

An Efficient Data Block Replacement and Rearrangement Technique for Hybrid Hard Disk Drive (하이브리드 하드디스크를 위한 효율적인 데이터 블록 교체 및 재배치 기법)

  • Park, Kwang-Hee;Lee, Geun-Hyung;Kim, Deok-Hwan
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Recently heterogeneous storage system such as hybrid hard disk drive (H-HDD) combining flash memory and magnetic disk is launched, according as the read performance of NAND flash memory is enhanced as similar to that of hard disk drive (HDD) and the power consumption of NAND flash memory is reduced less than that of HDD. However, the read and write operations of NAND flash memory are slower than those of rotational disk. Besides, serious overheads are incurred on CPU and main memory in the case that intensive write requests to flash memory are repeatedly occurred. In this paper, we propose the Least Frequently Used-Hot scheme that replaces the data blocks whose reference frequency of read operation is low and update frequency of write operation is high, and the data flushing scheme that rearranges the data blocks into the multi-zone of the rotation disk. Experimental results show that the execution time of the proposed method is 38% faster than those of conventional LRU and LFU block replacement schemes in I/O performance aspect and the proposed method increases the life span of Non-Volatile Cache 40% higher than those of conventional LRU, LFU, FIFO block replacement schemes.

Process Planning and Die Design for the Super Hot Forging Product, the Piston Crown Used in Marine Engine (선박엔진용 초대형 열간단조품, 피스톤크라운의 단조공정 및 금형 설계)

  • Hwang, B.C.;Lee, W.H.;Bae, W.B.;Kim, C.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.600-606
    • /
    • 2008
  • In closed-die hot forging, a billet is formed in dies such that the flow of metal from the die cavity is restricted. Some parts can be forged in a single set of dies, whilst others, due to shape complexity and material flow limitations, must be shaped in multi sets of dies. The purpose of a performing operation is to distribute the volume of the parts such that material flow in the finisher dies will be sound. This study focused on the design of preforms, flash thickness and land width by theoretical calculation and finite element analysis, to manufacture the super hot forging product, 70MC type piston crown used in marine engine. The optimal design of preforms by the finite element analysis and the design experiment achieves adequate metal distribution without any defects and guarantees the minimum forming load and fully filling of the cavity of the die for producing the large piston crown. The maximum loads obtained by finite element analysis are compared with the results of experiments. The loads of the analysis have good agreements with those of the experiment. Results obtained using DEFORM-2D enable the designer and manufacturer of super hot forging dies to be more efficient in this field.

Low-Power IoT Microcontroller Code Memory Interface using Binary Code Inversion Technique Based on Hot-Spot Access Region Detection (핫스팟 접근영역 인식에 기반한 바이너리 코드 역전 기법을 사용한 저전력 IoT MCU 코드 메모리 인터페이스 구조 연구)

  • Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.2
    • /
    • pp.97-105
    • /
    • 2016
  • Microcontrollers (MCUs) for endpoint smart sensor devices of internet-of-thing (IoT) are being implemented as system-on-chip (SoC) with on-chip instruction flash memory, in which user firmware is embedded. MCUs directly fetch binary code-based instructions through bit-line sense amplifier (S/A) integrated with on-chip flash memory. The S/A compares bit cell current with reference current to identify which data are programmed. The S/A in reading '0' (erased) cell data consumes a large sink current, which is greater than off-current for '1' (programmed) cell data. The main motivation of our approach is to reduce the number of accesses of erased cells by binary code level transformation. This paper proposes a built-in write/read path architecture using binary code inversion method based on hot-spot region detection of instruction code access to reduce sensing current in S/A. From the profiling result of instruction access patterns, hot-spot region of an original compiled binary code is conditionally inverted with the proposed bit-inversion techniques. The de-inversion hardware only consumes small logic current instead of analog sink current in S/A and it is integrated with the conventional S/A to restore original binary instructions. The proposed techniques are applied to the fully-custom designed MCU with ARM Cortex-M0$^{TM}$ using 0.18um Magnachip Flash-embedded CMOS process and the benefits in terms of power consumption reduction are evaluated for Dhrystone$^{TM}$ benchmark. The profiling environment of instruction code executions is implemented by extending commercial ARM KEIL$^{TM}$ MDK (MCU Development Kit) with our custom-designed access analyzer.

A Study of Purity-based Page Allocation Scheme for Flash Memory File Systems (플래시 메모리 파일 시스템을 위한 순수도 기반 페이지 할당 기법에 대한 연구)

  • Baek, Seung-Jae;Choi, Jong-Moo
    • The KIPS Transactions:PartA
    • /
    • v.13A no.5 s.102
    • /
    • pp.387-398
    • /
    • 2006
  • In this paper, we propose a new page allocation scheme for flash memory file system. The proposed scheme allocates pages by exploiting the concept of Purity, which is defined as the fraction of blocks where valid Pages and invalid Pages are coexisted. The Pity determines the cost of block cleaning, that is, the portion of pages to be copied and blocks to be erased for block cleaning. To enhance the purity, the scheme classifies hot-modified data and cold-modified data and allocates them into different blocks. The hot/cold classification is based on both static properties such as attribute of data and dynamic properties such as the frequency of modifications. We have implemented the proposed scheme in YAFFS and evaluated its performance on the embedded board equipped with 400MHz XScale CPU, 64MB SDRAM, and 64MB NAND flash memory. Performance measurements have shown that the proposed scheme can reduce block cleaning time by up to 15.4 seconds with an average of 7.8 seconds compared to the typical YAFFS. Also, the enhancement becomes bigger as the utilization of flash memory increases.

A File Clustering Algorithm for Wear-leveling (마모도 평준화를 위한 File Clustering 알고리즘)

  • Lee, Taehwa;Cha, Jaehyuk
    • Journal of Digital Contents Society
    • /
    • v.14 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • Storage device based on Flash Memory have many attractive features such as high performance, low power consumption, shock resistance, and low weight, so they replace HDDs to a certain extent. An Storage device based on Flash Memory has FTL(Flash Translation Layer) which emulate block storage devices like HDDs. A garbage collection, one of major functions of FTL, effects highly on the performance and the lifetime of devices. However, there is no de facto standard for new garbage collection algorithms. To solve this problem, we propose File Clustering Algorithm. File Clustering Algorithm respect to update page from same file at the same time. So, these are clustered to same block. For this mechanism, We propose Page Allocation Policy in FTL and use MIN-MAX GAP to guarantee wear leveling. To verify the algorithm in this paper, we use TPC Benchmark. So, The performance evaluation reveals that the proposed algorithm has comparable result with the existing algorithms(No wear leveling, Hot/Cold) and shows approximately 690% improvement in terms of the wear leveling.

Flash Memory System for Solid-state Disk by Using Various Memory Cells (다양한 메모리 셀을 결합한 디스크형 플래쉬 메모리 시스템)

  • Jung, Bo-Sung;Lee, Jung-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.3
    • /
    • pp.134-138
    • /
    • 2009
  • We present a flash memory system with low cost and high performance for solid-state disk. The proposed flash system is constructed as a SLC with hot blocks and a MLC with cold blocks. Either the SLC or the MLC is selectively accessed on the basis of a position bit in a mapping table. Our results show that the system enables the SLC size to be reduced by about 80% relative to a conventional SLC while maintaining similar performance. And also, our system can improve a performance by above 60% comparing with a conventional MLC.

  • PDF

Effect of Alloying Elements on Mechanical Properties and Microstructure of Steel Bar Fabricated by Endless Bar Rolling System with Flash Butt Welding (플래시버트 용접과 연속열간압연법으로 제조된 철근의 기계적 성질과 미세조직에 미치는 합금원소의 영향)

  • Kim, Ki-Won;Cho, Seung-Jae;Kang, Chung-Yum
    • Journal of Welding and Joining
    • /
    • v.27 no.3
    • /
    • pp.52-59
    • /
    • 2009
  • Flash butt welding is applied in many industries. New technology was developed recently for joining billets which called "EBROS (Endless Bar Rolling System)". After reheating billets in furnace, two billets were joined using flash butt welding. The objective of this study was to investigate the effect of alloying elements on mechanical properties of flash butt welded zone of hot rolled steel bar. The tensile properties on welded zone of Fe-Mn steel and Fe-Mn-V steel were dropped as compared with non-welded zone. Fe-Mn-Nb steel was opposed to the former. It was found that the white band at the welded zone had high ferrite volume fraction and large ferrite grain size. The vertical white band between flash butt welded billets was transformed into an arrowhead it of steel bar. According to this band, softening has been appeared. There was a interesting phenomenon with HAZ of Fe-Mn-Nb Steel, 40nm scale of particles were observed and hardness of HAZ was higher than non-welded zone.