Recently, six sigma has been widely adopted in a variety of industries as a disciplined, data-driven problem solving approach or methodology supported by a handful of powerful statistical tools in order to reduce variation through continuous process improvement. Also, data mining has been widely used to discover unknown knowledge from a large volume of data using various modeling techniques such as neural network, decision tree, regression analysis, etc. This paper proposes a six sigma methodology based on data mining for effectively and efficiently processing massive data in driving six sigma projects. The proposed methodology is applied in the hot stove system which is a major energy-consuming process in a "P" steel company for improvement of heat efficiency through reduction of energy consumption. The results show optimal operation conditions and reduction of the hot stove energy cost by 15%.
최근 실시간으로 생성되는 대용량의 SNS 데이터로부터 유의미한 정보를 찾아내고 분석하는 것이 중요해지면서 핫 토픽 검출에 대한 관심도 크게 증가하고 있다. SNS 특성상 사전 확인이 이루어지지 않은 불특정 다수의 글들을 대상으로 하기 때문에 이 글들을 대상으로 핫 토픽을 예측했을 때 결과의 신뢰성이 저하된다는 문제점이 있다. 이를 해결하기 위하여 본 논문에서는 소셜 네트워크에서 사용자의 영향력을 고려한 신뢰성 높은 핫 토픽 예측 기법을 제안한다. 트위터를 기반으로 변형된 TF-IDF 알고리즘을 통하여 순간적으로 많이 이슈화되는 키워드 후보 집합을 추출하고, 트윗에 사용자 영향력을 가중치로 부여함으로써 핫 토픽 예측 결과의 신뢰성을 높인다. 제안하는 기법의 우수성을 보이기 위해 기존 기법과 제안하는 기법의 성능평가를 수행한다. 성능평가 결과, 제안하는 기법은 기존 기법에 비해 정확도, 재현율 모두 향상됨을 확인하였다.
추력기의 개발단계에 있어 시험평가에 필요한 연소시험설비는 가장 중요한 인프라자원 중의 하나이다. 지난 3년여의 기간동안, 한국항공우주연구원과 (주)한화는 최대 200N 레벨까지 시험평가를 수행할 수 있는 진공시험설비를 설계 및 구축 완료하였다. 시험설비는 우주환경을 모사할 수 있는 진공시스템, 연료를 공급해주기 위한 시스템, 데이터 계측 및 제어시스템 등으로 구성된다. 이러한 시험설비의 최종목표는 위성용 추력기뿐만 아니라 발사체 및 달탐사선에 적용가능한 중대형급 추력기를 개발 및 시험평가하기 위함이며 본 논문에 이에 대한 세부내용 및 시험결과를 제시하였다.
전 세계적으로 스마트 환경의 발전에 따라 데이터의 폭발적인 증가로 인해 빅 데이터의 분석이 각광을 받고 있다. 금융, 유통, 제조, 재난 등 빅 데이터의 활용 분야에서 분석 및 활용에 대한 결과 활용이 중요하게 언급되고 있다. 본 연구에서는 전자상거래 시스템에서 빅 데이터의 성숙도 조사 결과를 기반으로 Business Process에 미치는 영향을 분석하여 데이터 분석 및 이의 활용에 미치는 영향 요소를 제시하고자 한다.
최근 낸드 플래시 메모리 기반의 Solid State Drive(SSD)가 기존 Hard Disk Drive(HDD)를 대신하여 개인용과 산업용으로도 널리 쓰이고 있다. 핫 데이터 구분 기법은 이러한 SSD 의 성능과 수명에 중요한 역할을 하는 Garbage Collection(GC)과 Wear Leveling(WL) 기술의 기반이 된다. 본 논문에서는 핫 데이터를 예측하기 위한 나이브 베이즈 분류 기반의 새로운 핫 데이터 구분 기법을 제안한다. 제안 기법은 워크로드 액세스 패턴의 학습 단계인 초기 단계와 실제 운영 단계를 통해 다시 액세스 될 확률이 높은 데이터를 그렇지 않은 데이터와 효과적으로 구분한다. 다양한 실제 trace 기반 실험을 통해 본 제안 기법이 기존 대표적인 기법보다 평균 19.3% 높은 성능을 확인했다.
최근 대규모 데이터의 처리와 관리를 위한 분산 저장 및 처리 시스템의 연구 및 활용이 중요해지고 있다. 대표적인 분산 저장 및 처리시스템으로써 하둡(Hadoop)이 널리 활용되고 있다. 하둡 분산 파일 시스템을 기반으로 수행되는 맵-리듀스에서 테스크 할당은 데이터의 로컬리티를 고려하여 최대한 가깝게 할당한다. 하지만 맵-리듀스에서의 데이터 분석 작업에서 작업 형태에 따라 빈번하게 요청되는 데이터가 존재한다. 이러한 경우, 해당 데이터의 낮은 로컬리티로 인해 수행시간 증가 및 데이터 전송의 지연의 문제점을 야기 시킨다. 본 논문에서는 맵-리듀스의 처리 속도 향상을 위한 데이터 접근 패턴에 따른 핫-데이터 복제 기법을 제안한다. 제안하는 기법에서는 데이터 접근 패턴에 따라 높은 접근 빈도를 보이는 핫-데이터에 대한 복제본 최적화 알고리즘을 활용하여 데이터 로컬리티를 향상시키고 결과적으로 작업 수행시간을 감소시킨다. 제안하는 기법은 기존 기법에 비해 모든 노드의 데이터 이동이 감소하여 접근빈도의 분포가 균형적인 것을 확인하였다. 성능평가 결과, 기존 기법에 비해 접근 빈도의 부하가 약 8% 감소하는 것을 확인하였다.
전기자동차용 전력반도체 패키징 기술에 대한 분석을 수행하였다. 비정형 데이터인 특허들을 수집하여 유효특허를 도출하여 LDA 기법을 적용한 토픽모델링을 수행하였다. 20개의 토픽으로 분류하였고 각 토픽별 추출된 단어를 통해 기술에 대한 정의를 내렸다. 각 토픽의 대한 동향분석을 위해 연도별 빈도수에 대한 회귀분석을 통해 토픽별 Hot토픽과 Cold 토픽을 도출하여 전력반도체 패키징 기술의 동향을 분석하였다. Hot 토픽의 기술로는 내전압에 따른 패키지 구조 기술과 입출력 관련 제어 기술, 방열기술을 도출하였고 Cold 토픽 기술로는 인덕턴스 저감기술이 도출되었다.
Ni-based superalloys have exceptional performance in high-temperature strength, corrosion resistance, etc, and it has been widely used in various applications that require corrosion resistance at high-temperature operations. However, the relatively expensive cost of the Ni-based superalloys is one of the major hurdles. The corrosion-resisted alloy(CRA) clad materials can be a cost-effective solution. In this study, finite element analysis of the hot rolling process for manufacturing of the Alloy 625/API X65 steel CRA clad plates is conducted. The stress-strain curves of the two materials are measured in compressive tests for various temperature and strain rate conditions, using the Gleeble tester. Then, strain hardening behavior is modeled following the modified Johnson-Cook model. Finite element analysis of the hot rolled cladding process is performed using this strain rate and temperature dependent hardening model. Finally, the thickness ratio of the CRA and base material is predicted and compared with experimental values.
Journal of the Korean Data and Information Science Society
/
제27권5호
/
pp.1193-1201
/
2016
공간 또는 시공간 데이터에서 다른 지역에 비해 유난히 높은 위험률을 보이는 소위 핫 스팟 (hot spot)으로 불리는 클러스터 (cluster)를 찾으려고 하는 경우가 많다. 기존의 많은 방법들은 이러한 클러스터 패턴이 존재하는지에 대한 해답만 주었지만, 최근의 많은 방법들은 클러스터의 위치, 모양, 크기뿐만 아니라 찾아진 클러스터가 통계적으로 유의한지까지 검정해준다. 본 논문에서는 이러한 다양한 방법 중 가장 많이 사용되는 클러스터 탐색 방법 중 하나인 스캔 통계량을 이용한 방법을 소개하고 그 방법이 구현된 무료 소프트웨어 SaTScan을 이용한 결과를 보여주고 장단점을 논하고자 한다. 미국 국립암센터의 SEER 프로그램에서 제공하는 미국의 각 카운티별 암 사망자 자료 중 2006년 여성 폐암 사망자 데이터를 예시 데이터로 사용하여 스캔 통계량을 이용하여 구한 클러스터 탐색 결과를 제시하고 비슷한 연구를 하고자는 연구자에게 도움을 주고자 한다.
공직자로서의 바람직한 가치관 확립과 공직의 전문성 향상을 위해 공무원의 직무 전문교육이 강조되고 있다. 만족도 높은 맞춤형 직무교육을 제공하기 위해 만족도에 영향을 미치는 요인을 분석한 연구들이 제안되고 있으나, 교육 내용을 활용하여 만족도를 예측한 연구는 부족한 실정이다. 따라서 본 연구는 교육 내용을 함께 고려해 공무원 직무 전문교육 만족도를 예측하는 딥러닝(Deep Learning) 모델을 제안한다. 제안 방법은 공무원 전문 교육과정 정보데이터를 활용한다. 우선 문자형으로 수집된 변수인 교육 대상, 교육 구분, 교육 형태를 원-핫 인코딩(One-hot Encoding)으로 카테고리화(Categorized)한다. 교육을 통해 학습할 수 있는 내용이 문자형으로 저장된 교육 내용을 TF-IDF(Term Frequency-Inverse Document Frequency)으로 수치화한다. 이를 딥러닝 기반의 회귀 모델로 학습하고, 10-겹 교차 검증(10-Fold Cross Validation)으로 모델의 성능을 검증한다. 본 연구의 제안 모델은 테스트 데이터에서 99.87%의 높은 예측 정확도를 보인다. 향후 본 연구를 고려한 맞춤형 교육 추천은 교육 대상에 최적화된 교육을 제공 및 개선하는 데에 도움이 될 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.