• Title/Summary/Keyword: Host resistance

Search Result 387, Processing Time 0.021 seconds

Disease Resistance of Race Differential Varieties and Improved Varieties(Nicotiana tabacum L.) on Black Shank (Phytophthora parasitica var. nicotianae) Infested Field (담배역병균(P. parasitica)에 오염된 포장에서의 Race 판별품종 및 육성품종(N. tabacum L.)의 발병반응)

  • 조천준
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.1
    • /
    • pp.7-12
    • /
    • 2000
  • This study was conducted to identify useful germ plasm sources of resistance to black shank, Phytophthora. parasitica, in Nicotiana tabacum and to characterize the interaction between host plant resistance to black shank and pathogen variability. The six internationally represen-tative set of black shank resistant and susceptible tobacco genotypes and four Korean lines were tested for black shank on the field infested with P. parasitica at Chonju Experiment Station, Korea Ginseng & Tobacco Research Institute during the 1992~1997 growing season. Almost 100% of the plants of the most susceptible genotype, Ky 14, did not survive. Complete survival of (MS Ky 14 x L8)F$_1$, which is resistant to reee 0 and ausceptible to reace 1, suggests that Race 0 is the only race of the P. parasitica in this bield. Coker 371 Gold and Beinhart 1000-1 having excellent resistance to black shank could be recommended as the parental cultivars for improving black shank resistance in Korea. Data of the diseased plants showed that KB 101 and KB 110 were medium high resistant and KB 103 and KB 108 being low resistant to black shank.

  • PDF

Root Exudation by Aphid Leaf Infestation Recruits Root-Associated Paenibacillus spp. to Lead Plant Insect Susceptibility

  • Kim, Bora;Song, Geun Cheol;Ryu, Choong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.549-557
    • /
    • 2016
  • Aphids are a large group of hemipteran pests that affect the physiology, growth, and development of plants by using piercing mouthparts to consume fluids from the host. Based an recent data, aphids modulate the microbiomes of plants and thereby affect the overall outcome of the biological interaction. However, in a few reports, aboveground aphids manipulate the metabolism of the host and facilitate infestations by rhizosphere bacteria (rhizobacteria). In this study, we evaluated whether aphids alter the plant resistance that is mediated by the bacterial community of the root system. The rhizobacteria were affected by aphid infestation of pepper, and a large population of gram-positive bacteria was detected. Notably, Paenibacillus spp. were the unique gram-positive bacteria to respond to changes induced by the aphids. Paenibacillus polymyxa E681 was used as a rhizobacterium model to assess the recruitment of bacteria to the rhizosphere by the phloem-sucking of aphids and to test the effect of P. polymyxa on the susceptibility of plants to aphids. The root exudates secreted from peppers infested with aphids increased the growth rate of P. polymyxa E681. The application of P. polymyxa E681 to pepper roots promoted the colonization of aphids within 2 days of inoculation. Collectively, our results suggest that aphid infestation modulated the root exudation, which led to the recruitment of rhizobacteria that manipulated the resistance of peppers to aphids. In this study, new information is provided on how the infestation of insects is facilitated through insect-derived modulation of plant resistance with the attraction of gram-positive rhizobacteria.

E. coli Mutants sensitive to Alkylating agents and their Complementary Gene (알킬화제 시약에 대해 민감한 E. coli 변종들과 그들의 상보적인 유전자에 대한 연구)

  • 정선호;한범희;양철학
    • Korean Journal of Microbiology
    • /
    • v.25 no.1
    • /
    • pp.57-66
    • /
    • 1987
  • Mutants of E. coli which showed increased sensitivity to MMS(methylmethane sulfonate)were isolated by MNNG mutagenesis and characterized by enzymatic assay, survival of simple alkylating agents and host-cell reactivation. E.coli mutant, 5-62, which showed absolute deficiency in 3-methyladenine DNA glycosylase II activity and had low capability of reactivating MMS-treated phage charon 35 was very sensitive to MMS and MNNG. NNS gene which confered resistance to the lethal effects of MMS was cloned in 5-62 strain. 5-62 mutants carrying recombinant plasmid, pMRG 1, which acquired resistance to the lethal effects of MMS had normal sensitivity to MNNG. Resistance to MMS was somewhat increased after they were treated with 0.5.$\mu$g MNNG/ml for 2 hours at $37^{\circ}C$. Although recombinant plasmid, pMRG 1, did not complement alk A mutation in 5-62 and ada mutation in 1-27 mutnat, mutnats transformed with this plasmid showed more capability of reactivating MMS treated phage than mutants.

  • PDF

Bio-control of Stem Rot in Jerusalem Artichoke (Helianthus tuberosus L.) in Field Conditions

  • Junsopa, Chutsuda;Saksirirat, Weerasak;Saepaisan, Suwita;Songsri, Patcharin;Kesmala, Thawan;Shew, Barbara B.;Jogloy, Sanun
    • The Plant Pathology Journal
    • /
    • v.37 no.5
    • /
    • pp.428-436
    • /
    • 2021
  • Stem rot is a serious disease in Jerusalem artichoke (JA). To reduce the impact of this disease on yield and quality farmers often use fungicides, but this control method can be expensive and leave chemical residues. The objective of this study was to evaluate the efficacy of two biological control agents, Trichoderma harzianum T9 and Bacillus firmus BSR032 for control of Sclerotium rolfsii under field conditions. Four accessions of JA (HEL246, HEL65, JA47, and JA12) were treated or notreated with T. harzianum T9 and B. firmus BSR032 in a 4 × 2 × 2 factorial experiment in two fields (environments), one unfertilized and one fertilized. Plants were inoculated with S. rolfsii and disease was evaluated at 3-day intervals for 46 days. T. harzianum T9 and B. firmus BSR032 reduced disease incidence by 48% and 49%, respectively, whereas T. harzianum T9 + B. firmus BSR032 reduced disease incidence by 37%. The efficacy of T. harzianum T9 and B. firmus BSR032 for control of S. rolfsii was dependent on environments and genotypes. The expression of host plant resistance also depended on the environment. However, HEL246 showed consistently low disease incidence and severity index in both environments (fertilized and unfertilized). Individually, T. harzianum T9, B. firmus BSR032, or host plant resistance control stem rot caused by S. rolfsii in JA. However, no combination of these treatments provided more effective control than each alone.

What Can Proteomics Tell Us about Tuberculosis?

  • Susana Flores-Villalva;Elba Rogriguez-Hernandez;Yesenia Rubio-Venegas;Jorge Germinal Canto-Alarcon;Feliciano Milian-Suazo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1181-1194
    • /
    • 2015
  • Tuberculosis (TB) is an infectious disease transmitted by aerosol droplets and characterized by forming granulomatous lesions. Although the number of people infected in the population is high, the vast majority does not exhibit symptoms of active disease and only 5-10% develop the disease after a latent period that can vary from weeks to years. The bases of the immune response for this resistance are unknown, but it depends on a complex interaction between the environment, the agent, and the host. The analysis of cellular components of M. tuberculosis shows important host-pathogen interactions, metabolic pathways, virulence mechanisms, and mechanisms of adaptation to the environment. However, the M. tuberculosis proteome still remains largely uncharacterized in terms of virulence and pathogenesis. Here, we summarize some of the major proteomic studies performed to scrutinize all the mycobacterial components.

Effects of nasopharyngeal microbiota in respiratory infections and allergies

  • Kang, Hyun Mi;Kang, Jin Han
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.11
    • /
    • pp.543-551
    • /
    • 2021
  • The human microbiome, which consists of a collective cluster of commensal, symbiotic, and pathogenic microorganisms living in the human body, plays a key role in host health and immunity. The human nasal cavity harbors commensal bacteria that suppress the colonization of opportunistic pathogens. However, dysbiosis of the nasal microbial community is associated with many diseases, such as acute respiratory infections including otitis media, sinusitis and bronchitis and allergic respiratory diseases including asthma. The nasopharyngeal acquisition of pneumococcus, which exists as a pathobiont in the nasal cavity, is the initial step in virtually all pneumococcal diseases. Although the factors influencing nasal colonization and elimination are not fully understood, the adhesion of opportunistic pathogens to nasopharyngeal mucosa receptors and the eliciting of immune responses in the host are implicated in addition to bacterial microbiota properties and colonization resistance dynamics. Probiotics or synbiotic interventions may show promising and effective roles in the adjunctive treatment of dysbiosis; however, more studies are needed to characterize how these interventions can be applied in clinical practice in the future.

Poultry Coccidiosis-A Concurrent Overview on Etiology, Diagnostic Practices, and Preventive Measures

  • Nawarathne, Shan Randima;Yu, Myunghwan;Heo, Jung Min
    • Korean Journal of Poultry Science
    • /
    • v.48 no.4
    • /
    • pp.297-318
    • /
    • 2021
  • Coccidiosis is a major parasitic disease in the poultry industry, with great economic implications worldwide. It is a ubiquitous protozoan infection caused by several species of the genus Eimeria (host-specific) that colonize and reproduce in the intestine of birds, ultimately altering the health and performance of the flock. At present, several methods are used to diagnose coccidiosis in poultry, including field and laboratory techniques (intestinal lesion scoring, oocyst counting in feces, and biochemical and molecular diagnosis). Traditionally, diagnosed flocks have been treated either by vaccination to improve the active immunity of the birds against coccidiosis or supplementation of prophylactic anticoccidials to ameliorate the deleterious effects of coccidiosis. However, these methods has certain drawbacks such as vaccine-induced coccidiosis, drug resistance, and residual drug accumulation in the host. Consequently, alternative safe anti-coccidial agents, including the use of phytogenic compounds, have been explored for preventing coccidiosis. Here, we provide a simple overview of the literature on poultry coccidiosis by focusing on the etiology, diagnostic practices, and preventive measures.

Rpi-blb2 Gene-Mediated Late Blight Resistance in Plants

  • Oh, Sang-Keun
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.26-26
    • /
    • 2015
  • Phytophthora infestans is the causal agent of potato and tomato late blight, one of the most devastating plant diseases. P. infestans secretes effector proteins that are both modulators and targets of host plant immunity. Among these are the so-called RXLR effectors that function inside plant cells and are characterized by a conserved motif following the N-terminal signal peptide. In contrast, the effector activity is encoded by the C terminal region that follows the RXLR domain. Recently, I performed in planta functional profiling of different RXLR effector alleles. These genes were amplified from a variety of P. infestans isolates and cloned into a Potato virus X (PVX) vector for transient in planta expression. I assayed for R-gene specific induction of hypersensitive cell death. The findings included the discovery of new effector with avirulence activity towards the Solanum bulbocastanum Rpi-blb2 resistance gene. The Rpi-blb2 encodes a protein with a putative CC-NBS-LRR (a coiled-coil-nucleotide binding site and leucine-rich repeat) motif that confers Phytophthora late blight disease resistance. We examined the components required for Rpi-blb2-mediated resistance to P. infestans in Nicotiana benthamiana. Virus-induced gene silencing was used to repress candidate genes in N. benthamiana and to assay against P. infestans infections. NbSGT1 was required for disease resistance to P. infestans and hypersensitive responses (HRs) triggered by co-expression of AVRblb2 and Rpi-blb2 in N. benthamiana. RAR1 and HSP90 did not affect disease resistance or HRs in Rpi-blb2-transgenic plants. To elucidate the role of salicylic acid (SA) in Rpi-blb2-mediated resistance, we analyzed the response of NahG-transgenic plants following P. infestans infection. The increased susceptibility of Rpi-blb2-transgenic plants in the NahG background correlated with reduced SA and SA glucoside levels. Furthermore, Rpi-blb2-mediated HR cell death was associated with $H_2O_2$, but not SA, accumulation. SA affects basal defense and Rpi-blb2-mediated resistance against P. infestans. These findings provide evidence about the roles of SGT1 and SA signaling in Rpi-blb2-mediated resistance against P. infestans.

  • PDF

$^{31}p$ Nuclear Magnetic Resonance Studies of Acetic Acid Inhibition of Ethanol Production by Strains of Zymomonas mobilis

  • Kim, In-Seop;Barrow, Kevin D.;Rogers, Peter L.
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.90-98
    • /
    • 2003
  • In vivo $^31p$ Nuclear Magnetic Resonance ($^31p$NMR) and metabolic studies were carried out on an acetic acid tolerant mutant, Zymomonas mobilis $ZM4/Ac^R$, and compared to those of the parent strain, Z. mobilis ZM4, to evaluate possible mechanisms of acetic acid resistance. This investigation was initiated to determine whether or not the mutant strain might be used as a suitable recombinant host far ethanol production from lignocellulose hydrolysates containing various inhibitory compounds. $ZM4/Ac^R$ showed multiple resistance to other lignocellulosic toxic compounds such as syringaldehyde, furfural, hydroxymethyl furfural, vanillin, and vanillic acid. The mutant strain was resistant to higher concentrations of ethanol or lower pH in the presence of sodium acetate, compared to ZM4 which showed more additive inhibition. in vivo $^31p$ NMR studies revealed that intracellular acidification and de-energization were two mechanisms by which acetic acid exerted its inhibitory effect. For $ZM4/Ac^R$, the internal pH and the energy status were less affected by sodium acetate compared to the parent strain. This resistance to pH change and de-energization caused by acetic acid is a possible explanation for the development of resistance by this strain.

Serovars distribution and antimicrobial resistance patterns of Salmonella spp. isolated from the swine farms and slaughter houses

  • Jung, Hokyoung;Lee, Sungseok;Kim, Chiyoung;Sunwoo, Sunyoung;Lyoo, Young S.
    • Korean Journal of Veterinary Research
    • /
    • v.51 no.2
    • /
    • pp.123-128
    • /
    • 2011
  • Salmonella spp. is an important pathogen to both public and swine industry. The aim of this study was to investigate the distribution of Salmonella serovar and antibiotics susceptibility of the isolates from Korean swine producing systems. A total of 63 (5.28%) Salmonella spp. was isolated from 1,194 samples (977 fecal materials and 67 organ samples). The predominant Salmonella (S.) enterica serotype and serovar was group B (69.8%) and S. Typhimurium (47.6%), S. Derby (20.6%) and S. Heidelberg (1.6%). But S. Cholerasuis which is characterized host specific by septicemia and enteritis to pigs was not isolated. Antimicrobial susceptibility of the isolates varies as follows: Norfloxacine (75%), Ciprofloxacin (67.5%), Amikacin (60%), Colistin (60%), Enrofloxacin (55%). All of isolates were resistant to Erythromycin, Penicillin, Tetracycline and Lincomycin. The results of this study provided useful information regarding antimicrobial susceptibility and resistance patterns to treat salmonellosis and to prevent emergence of multidrug resistance Salmonella.