$^{31}p$ Nuclear Magnetic Resonance Studies of Acetic Acid Inhibition of Ethanol Production by Strains of Zymomonas mobilis

  • Kim, In-Seop (Green Cross Plasma Derivatives Company, School of Biotechnology and Biomolecular Sciences, University of New South Wales) ;
  • Barrow, Kevin D. (School of Biotechnology and Biomolecular Sciences, University of New South Wales) ;
  • Rogers, Peter L. (School of Biotechnology and Biomolecular Sciences, University of New South Wales)
  • Published : 2003.02.01

Abstract

In vivo $^31p$ Nuclear Magnetic Resonance ($^31p$NMR) and metabolic studies were carried out on an acetic acid tolerant mutant, Zymomonas mobilis $ZM4/Ac^R$, and compared to those of the parent strain, Z. mobilis ZM4, to evaluate possible mechanisms of acetic acid resistance. This investigation was initiated to determine whether or not the mutant strain might be used as a suitable recombinant host far ethanol production from lignocellulose hydrolysates containing various inhibitory compounds. $ZM4/Ac^R$ showed multiple resistance to other lignocellulosic toxic compounds such as syringaldehyde, furfural, hydroxymethyl furfural, vanillin, and vanillic acid. The mutant strain was resistant to higher concentrations of ethanol or lower pH in the presence of sodium acetate, compared to ZM4 which showed more additive inhibition. in vivo $^31p$ NMR studies revealed that intracellular acidification and de-energization were two mechanisms by which acetic acid exerted its inhibitory effect. For $ZM4/Ac^R$, the internal pH and the energy status were less affected by sodium acetate compared to the parent strain. This resistance to pH change and de-energization caused by acetic acid is a possible explanation for the development of resistance by this strain.

Keywords

References

  1. J. Biol. Chem. v.259 $^31$P nuclear magnetic resonance studies of the fermentation of glucose to ethanol by Zymomonas mobilis Barrow K. D.;J. G. Collins;R. S. Norton;P. L. Rogers;G. M. Smith
  2. Appl. Environ. Microbiol. v.62 Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic engineering Deanda K.;M. Zhang;C. Eddy;S. Picataggio
  3. Enzyme Microb. Technol. v.19 Effect of lignocellulosic degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis and Candida shehatae Delgenes J. P.;R. Moletta;J. M. Navarro https://doi.org/10.1016/0141-0229(95)00237-5
  4. Appl. Environ. Microbiol. v.64 Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose Ho N. W. Y.;Z. D. Chen;A. Brainard
  5. Appl. Environ. Microbiol. v.62 Activity of the plasma membrane H$^+$-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid Holyoak C. D.;M. Stratford;Z. McMullin;M. B. Cole;K. Crimmins;A. J. P. Brown;P. J. Coote
  6. J. Microbiol. Biotechnol. v.10 Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae containing genes for xylose reductase and xylitol dehydrogenase from Pichia stipitis Jin Y. S.;T. H. Lee;Y. D. Choi;Y. W. Ryu;J. H. Seo
  7. Biotechnol. Lett v.20 A mutant of Zymomonas mobilis ZM4 capable of ethanol production from glucose in the presence of high acetate concentration Joachimsthal E.;K. D. Haggett;J. H. Jang;P. L. Rogers https://doi.org/10.1023/A:1005320306410
  8. Biotechnol. Lett. v.21 Application of nuclear magnetic resonance spectroscopy to analysis of ethanol fermentation kinetics in yeast and bacteria Kim I. S.;K. D. Barrow;P. L. Rogers https://doi.org/10.1023/A:1005519323748
  9. Appl. Environ. Microbiol. v.66 Kinetic and nuclear magnetic resonance stidues of xylose metabolism by recombinant Zymomonas mobilis ZM4(pZB5) Kim I. S.;K. D. Barrow;P. L. Rogers https://doi.org/10.1128/AEM.66.1.186-193.2000
  10. J. Microbiol. Biotechnol. v.9 Ethanol production from lignocellulosic biomass by simultaneous saccharification and fermentation employing the reuse of yeast and enzyme Kim J. S.;K. K. Oh;S. W. Kim;Y. S. Jeong;S. I. Hong
  11. Appl. Microbiol. Biotechnol. v.17 A new approach for improving the performance of Zymomonas in continuous ethanol fermentations Lawford H. G.
  12. Appl. Biochem. Biotechnol. v.39;40 Effect of pH and acetic acid on glucose and xylose metabolism by a genetically engineered ethanologenic Escherichia coli Lawford H. G.;J. D. Rousseau
  13. Appl. Biochem. Biotechnol. v.39;40 The effect of acetic acid on fuel ethanol production by Zymomonas Lawford H. G.;J. D. Rousseau
  14. Appl. Biochem. Biotechnol. v.45;46 The pH dependant energetic uncoupling of Zymomonas by acetic acid Lawford H. G.;J. D. Rousseau
  15. Biotechnol. Lett. v.2 Kinetic studies on a highly productive strain of Zymomonas mobilis Lee K. J.;M. L. Skotnicki;D. E. Tribe;P. L. Rogers https://doi.org/10.1007/BF00138666
  16. Appl. Microbiol. Biotechnol. v.43 Improved strains of recombinant Escherichia coli for ethanol production from sugar substrates Lindsay S. E.;R. J. Bothast;L. O. Ingram https://doi.org/10.1007/BF00170625
  17. J. Ind. Microbiol. Biotechnol. v.20 Intracellular acidification as a mechanism for the inhibition by acid hydrolysis-derived inhibitors of xylose fermentation by yeasts Lohmeier Vogel E. M.;C. R. Sopher;H. Lee https://doi.org/10.1038/sj.jim.2900484
  18. Arch. Microbiol. v.153 Effect of ethanol on Saccharomyces cerevisiae as monitored by in vivo $^31$P and $^13$C nuclear magnetic resonance Loureiro Dias M.;H. Santos https://doi.org/10.1007/BF00249010
  19. Appl. Environ. Microbiol. v.56 Comparison of growth, acetate production and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentation Luli G.;W. Strohl
  20. Anal. Biochem. v.191 Nuclear magnetic resonance studies of cellular metabolism Lundberg P.;E. Harmsen;C. Ho;H. J. Vogel https://doi.org/10.1016/0003-2697(90)90210-Z
  21. Appl. Environ. Microbiol. v.44 Concurrent production and consumption of ethanol by cultures of Pachysolen tannophilus growing on D-xylose Maleszka R.;H. Schneider
  22. Bioenergetics - An Introduction to the Chemiosmotic Theory Nicholls D. G.
  23. Appl. Environ. Microbiol. v.57 Metabolic engineering of klebsiella oxytoca MSAI for ethanol production from xylose and glucose Ohta K.;D. S. Beall;J. P. Meijia;T. Shannugan;L. O. Ingram
  24. Appl. Microbiol. Biotechnol. v.43 Characterization of recombinant E. coli ATCC 11303 (p1OI297) in the conversion of cellulose and xylose to ethanol Padukone N.;K. W. Evans;J. D. McMillian;C. E. Wyman https://doi.org/10.1007/BF02431918
  25. Biotechnol. Lett. v.11 Interaction of the effects of acetic acid and ethanol on inhibition of fermentation in Saccharomyces cerevisiae Pampulha M. E.;V. Loureiro https://doi.org/10.1007/BF01031576
  26. Appl. Microbiol. Biotechnol. v.28 Regulation of intracellular H$^+$ balance in Zymomonas mobilis 113 during the shift from anaerobic to aerobic conditions Pankova L. M.;J. E. Shivinka;M. J. Beker
  27. Appl. Biochem. Biotechnol. v.67 Identification of inhibitory components toxic toward Zymomonas mobilis CP4(pZB5) xylose fermentation Ranatunga T. D.;J. Jervis;R. F. Helm;J. D. McMillan;C. Hatzis https://doi.org/10.1007/BF02788797
  28. Adv. Biochem. Eng. v.23 Ethanol production by Zymomonas mobilis Rosers P. L.;K. J. Lee;M. L. Skotnicki;D. E. Tribe
  29. Biotech. Lett. v.1 Kinetics of alcohol production by Zymomonas mobilis at high sugar concentration Rogers P. L.;K. J. Lee;D. E. Tribe https://doi.org/10.1007/BF01388142
  30. Arch. Microbiol. v.159 $^31$P nuclear magnetic resonance studies of ethanol inhibition in Zymomonas mobilis Strohhacker J.;A. A. de Graaf;S. M. Schoberth;R. M. Wittig;H. Sahm https://doi.org/10.1007/BF00288598
  31. Appl. Biochem. Biotechnol. v.63-65 Enhanced cofermentation of glucose and xylose by recombinant Saccharomyces yeast strains in batch and continuous operating modes Toon S. T.;G. P. Philippidis;N. W. Y. Ho;Z. D. Chen;A. Brainard;R. E. Lumpkin;C. J. Riley https://doi.org/10.1007/BF02920428
  32. Biotechnol. Lett. v.7 Red oak wood derived inhibitors in the ethanol fermentation of xylose by Pichia stipitis CBS 5776 Tran A. V.;R. P. Chambers https://doi.org/10.1007/BF01025567
  33. Science v.67 Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis Zhang M.;C. Eddy;K. Deanda;M. Finkelstein;S. Picataggio