• 제목/요약/키워드: Host resistance

검색결과 387건 처리시간 0.029초

PLANT CELL WALL WITH FUNGAL SIGNALS MAY DETERMINE HOST-PARASITE SPECIFICITY

  • Shiraishi, T.;Kiba, A.;Inata, A.;Sugimoto, M.;Toyoda, K.;Ichinose, Y.;Yamada, T.
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1998년도 The 12th Symposium on Plant Biotechnology Vol.12
    • /
    • pp.10-18
    • /
    • 1998
  • For improvement of plants in disease resistance, it is most important to elucidate the mechanism to perceive and respond to the signal molecules of invaders. A model system with pea and its pathogen, Mycosphaerella pinodes, showed that the fungal elicitor induced defense responses in all plant species tested but that the suppressor of the fungus blocked or delayed the expression of defense responses and induced accessibility only in the host plant. In the world, many researchers believe that the pathogens` signals are recognized only on the receptors in the plasma membranes. Though we found that the ATPase and polyphosphoinositide metabolism in isolated plasma membranes responded to these fungal signals, we failed to detect specific actions of the suppressor in vitro on these plasma membrane functions. Recently, we found that ATPase (NTPases) and superoxide generating system in isolated cell wall were regulated by these fungal signals even in vitro, especially, by the suppressor in a strictly species-specific manner and also that the cell wall alone prepared an original defense system. The effects of both fungal signals on the isolated cell wall functions in vitro coincide perfectly with those on defense responses in vivo. In this treatise, we discuss the key role of the cell wall, which is plant-specific and the most exterior organelle, in determining host-parasite specificity and molecular target for improvement of plants.

  • PDF

배나무 붉은별무늬병(적성병)에 관한 연구 II. 중간기주조사 및 약제방제 (Studies on the Disease of Pear Rust Caused by Gymnosporangium haraeanum SYDOW II. Survey of Juniper Host and Chemical Control of Pear rust)

  • 김승철;김충회
    • 한국응용곤충학회지
    • /
    • 제21권4호
    • /
    • pp.207-210
    • /
    • 1982
  • 본 연구는 배나무붉은별무늬병의 중간기생 조사 및 향나무${\cdot}$배나무에 대한 효과적 약제방제방법을 마련코자 수행되었으며 그 결과는 아래와 같다. 1. 배나무붉별무늬병균의 동포자퇴 형성은 피라밋드향나무에서 가장 많았으며 참향나무, 향나무, 연필 향나무가 중간, 노간주자무, 둥근향나무는 적었다. 2. 향나무에 대한 살포약제는 Actidione 1000배액의 4월초순${\cdot}$중순의 2회 살포가 가장 좋았으며 약해도 없었다. 3. 배나무에 대한 Bayleton 800배액의 4월순$\~$5월초순의 $2\~3$회 살포는 병발생을 효과적으로 억제하였다. 4. 배나무에 대한 약제살포는 강우전에 하는 것이 가장 효과적이었으며 강우후 살포시기가 지연될수록 효과는 감소하였다.

  • PDF

A Moonlighting Protein Secreted by a Nasal Microbiome Fortifies the Innate Host Defense Against Bacterial and Viral Infections

  • Gwanghee Kim;Yoojin Lee;Jin Sun You;Wontae Hwang;Jeewon Hwang;Hwa Young Kim;Jieun Kim;Ara Jo;In ho Park;Mohammed Ali;Jongsun Kim;Jeon-Soo Shin;Ho-Keun Kwon;Hyun Jik Kim;Sang Sun Yoon
    • IMMUNE NETWORK
    • /
    • 제23권4호
    • /
    • pp.31.1-31.18
    • /
    • 2023
  • Evidence suggests that the human respiratory tract, as with the gastrointestinal tract, has evolved to its current state in association with commensal microbes. However, little is known about how the airway microbiome affects the development of airway immune system. Here, we uncover a previously unidentified mode of interaction between host airway immunity and a unique strain (AIT01) of Staphylococcus epidermidis, a predominant species of the nasal microbiome. Intranasal administration of AIT01 increased the population of neutrophils and monocytes in mouse lungs. The recruitment of these immune cells resulted in the protection of the murine host against infection by Pseudomonas aeruginosa, a pathogenic bacterium. Interestingly, an AIT01-secreted protein identified as GAPDH, a well-known bacterial moonlighting protein, mediated this protective effect. Intranasal delivery of the purified GAPDH conferred significant resistance against other Gram-negative pathogens (Klebsiella pneumoniae and Acinetobacter baumannii) and influenza A virus. Our findings demonstrate the potential of a native nasal microbe and its secretory protein to enhance innate immune defense against airway infections. These results offer a promising preventive measure, particularly relevant in the context of global pandemics.

Cathelicidin-related Antimicrobial Peptide Contributes to Host Immune Responses Against Pulmonary Infection with Acinetobacter baumannii in Mice

  • Min-Jung Kang;Ah-Ra Jang;Ji-Yeon Park;Jae-Hun Ahn;Tae-Sung Lee;Dong-Yeon Kim;Do-Hyeon Jung;Eun-Jung Song;Jung Joo Hong;Jong-Hwan Park
    • IMMUNE NETWORK
    • /
    • 제20권3호
    • /
    • pp.25.1-25.13
    • /
    • 2020
  • Acinetobacter baumannii is known for its multidrug antibiotic resistance. New approaches to treating drug-resistant bacterial infections are urgently required. Cathelicidin-related antimicrobial peptide (CRAMP) is a murine antimicrobial peptide that exerts diverse immune functions, including both direct bacterial cell killing and immunomodulatory effects. In this study, we sought to identify the role of CRAMP in the host immune response to multidrug-resistant Acinetobacter baumannii. Wild-type (WT) and CRAMP knockout mice were infected intranasally with the bacteria. CRAMP-/- mice exhibited increased bacterial colony-forming units (CFUs) in bronchoalveolar lavage (BAL) fluid after A. baumannii infection compared to WT mice. The loss of CRAMP expression resulted in a significant decrease in the recruitment of immune cells, primarily neutrophils. The levels of IL-6 and CXCL1 were lower, whereas the levels of IL-10 were significantly higher in the BAL fluid of CRAMP-/- mice compared to WT mice 1 day after infection. In an in vitro assay using thioglycollate-induced peritoneal neutrophils, the ability of bacterial phagocytosis and killing was impaired in CRAMP-/- neutrophils compared to the WT cells. CRAMP was also essential for the production of cytokines and chemokines in response to A. baumannii in neutrophils. In addition, the A. baumannii-induced inhibitor of κB-α degradation and phosphorylation of p38 MAPK were impaired in CRAMP-/- neutrophils, whereas ERK and JNK phosphorylation was upregulated. Our results indicate that CRAMP plays an important role in the host defense against pulmonary infection with A. baumannii by promoting the antibacterial activity of neutrophils and regulating the innate immune responses.

박테리오파지 저항성을 갖는 Pseudomonas tolaasii 변이주 분리 및 이들의 병원특성 (Isolation of bacteriophage-resistant Pseudomonas tolaasii strains and their pathogenic characters)

  • 박수진;한지혜;김영기
    • Journal of Applied Biological Chemistry
    • /
    • 제59권4호
    • /
    • pp.351-356
    • /
    • 2016
  • 세균성 갈반병은 느타리버섯(Pleurotus ostreatus)의 주된 병중의 하나이다. 박테리오파지를 이용한 파지테라피 방법은 병원균의 농도를 감소시켜 병없는 재배사를 만드는데 성공적이었다. 병원균 사멸을 위한 파지의 이용은 숙주균의 특이성 때문에 매우 제한적 효과를 보이며, 이것은 병원균의 작은 변이에도 파지의 민감성은 크게 감소할 수 있기 때문이다. 본 연구에서는 파지테라피의 효용성을 높이기 위하여 갈반병의 원인균인 P. tolaasii 균주로부터 파지-저항성 변이주를 분리하였고 병원성 특성을 조사하였다. 16S rRNA 유전자의 염기서열 분석을 통한 근연관계 분석에서 파지저항성 균주들은 모두 원래의 숙주균과 일치하였고, 용혈활성이나 갈반형성 능력 등 병원성은 파지저항성 획득과 관련이 없는 것으로 확인되었다. 그럼에도 불구하고, 파지저항성 균주의 다양한 병원성은 균의 종류에 따라 증감이 다르게 나타났다. 따라서, 성공적인 파지테라피를 위해서는 넓은 숙주 범위를 갖는 파지의 분리가 필요하다.

Magnaporthe oryzae Effector AVR-Pii Helps to Establish Compatibility by Inhibition of the Rice NADP-Malic Enzyme Resulting in Disruption of Oxidative Burst and Host Innate Immunity

  • Singh, Raksha;Dangol, Sarmina;Chen, Yafei;Choi, Jihyun;Cho, Yoon-Seong;Lee, Jea-Eun;Choi, Mi-Ok;Jwa, Nam-Soo
    • Molecules and Cells
    • /
    • 제39권5호
    • /
    • pp.426-438
    • /
    • 2016
  • Plant disease resistance occurs as a hypersensitive response (HR) at the site of attempted pathogen invasion. This specific event is initiated in response to recognition of pathogen-associated molecular pattern (PAMP) and subsequent PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). Both PTI and ETI mechanisms are tightly connected with reactive oxygen species (ROS) production and disease resistance that involves distinct biphasic ROS production as one of its pivotal plant immune responses. This unique oxidative burst is strongly dependent on the resistant cultivars because a monophasic ROS burst is a hallmark of the susceptible cultivars. However, the cause of the differential ROS burst remains unknown. In the study here, we revealed the plausible underlying mechanism of the differential ROS burst through functional understanding of the Magnaporthe oryzae (M. oryzae) AVR effector, AVR-Pii. We performed yeast two-hybrid (Y2H) screening using AVR-Pii as bait and isolated rice NADP-malic enzyme2 (Os-NADP-ME2) as the rice target protein. To our surprise, deletion of the rice Os-NADP-ME2 gene in a resistant rice cultivar disrupted innate immunity against the rice blast fungus. Malic enzyme activity and inhibition studies demonstrated that AVR-Pii proteins specifically inhibit in vitro NADP-ME activity. Overall, we demonstrate that rice blast fungus, M. oryzae attenuates the host ROS burst via AVR-Pii-mediated inhibition of Os-NADP-ME2, which is indispensable in ROS metabolism for the innate immunity of rice. This characterization of the regulation of the host oxidative burst will help to elucidate how the products of AVR genes function associated with virulence of the pathogen.

사탕무씨스트선충의 기주범위 검정 (Host Range Screening of the Sugar Beet Nematode, Heterodera schachtii Schmidt)

  • 김동환;조명래;양창열;김형환;강택준;윤정범
    • 한국응용곤충학회지
    • /
    • 제55권4호
    • /
    • pp.389-403
    • /
    • 2016
  • 사탕무씨스트선충(Heterodera schachtii)의 피해가 2011년에 배추 주산지인 강원도 지역에서 확인되었다. 이 선충은 암컷이 씨스트를 형성하는 특성을 가지므로 농약에 의한 효과적인 방제가 어렵다. 따라서 사탕무시스트선충에 대한 비기주 작물을 선정하여 감염지역의 배추를 대체할 작물을 추천하고자 총 17과(科) 276품종의 식물에 대한 사탕무씨스트선충의 저항성을 검정하였다. 사탕무씨스트선충 접종 후 씨스트 발생 정도에 따라 감수성(susceptible), 중감수성(moderately susceptible), 저항성/비기주(resistant/immune)로 구분하였다. 검정 결과 감수성 106품종, 중감수성 40품종, 저항성/비기주 130품종으로 구분되었다. 씨스트가 전혀 형성되지 않은 작물은 가지, 토마토, 상추, 들깨, 당근, 셀러리, 수박, 참외, 오이, 호박, 부추, 양파, 파, 도라지, 더덕, 잔대, 콩 등이었다. 가지과, 국화과, 명아주과, 화본과 작물은 작물 및 품종에 따라 약감수성 또는 저항성/비기주 식물이 혼재하였다. 본 시험에서 사탕무씨스트선충이 전혀 발생하지 않아 저항성/비기주식물로 밝혀진 130품종은 사탕무씨스트선충 감염지의 배추를 대체할 작목을 추천하는데 활용할 수 있을 것으로 생각된다.

Weeding Efficacy of Sulfonylurea Resistance Weed, Monochoria (Monochoria vaginalis) with Brown Leaf Blight Caused by BWC01-54

  • Hong, Yeon-Kyu;Lee, Bong-Choon;Song, Seok-Bo;Hwang, Jae-Bok;Park, Sung-Tae
    • The Plant Pathology Journal
    • /
    • 제21권1호
    • /
    • pp.77-82
    • /
    • 2005
  • A summer annual weed of monochoria (Monochoria vaginalis) grows in the edges of rice paddies, ditches, and moist upland throughout Korea. It is very difficult to control with herbicide because of its sulfonylurea resistance. It is very competitive with fast growing pattern, that can cause reducing yields of rice. Brown leaf blight of monochoria (Monochoria vaginalis) occurred naturally in rice paddy, is first reported in Korea. The fungal isolate BWC01-54 was successfully isolated from the diseased leaves of monochoria. The fungus BWC 01-54 was grown well at $25-28^{\circ}C$, conidia of the greysh black brown mycelia were abundant produced on PDA at 15 days. The fungus was grown well in potato dextrose broth at $28^{\circ}C$ and fully grown within 10 days in 250 ml of flask. In host and pathogenicity test, conidia suspension of BWC01-54 was the most effective to control of monochoria compare to others isolates. Typical symptoms having pin point brown lesions were formed on stem and leaf and which severely affected the whole plants ware blighted within two weeks, respectively. Under paddies field condition, conidial suspension of the fungus BWC01-54 gave around 90% control. Therefore, we conclude that the fungus may have a potential as a biological control agent against sulfonylurea resistance weed in rice paddy.

Identification of Coupling and Repulsion Phase DNA Marker Associated With an Allele of a Gene Conferring Host Plant Resistance to Pigeonpea sterility mosaic virus (PPSMV) in Pigeonpea (Cajanus cajan L. Millsp.)

  • Daspute, Abhijit;Fakrudin, B.
    • The Plant Pathology Journal
    • /
    • 제31권1호
    • /
    • pp.33-40
    • /
    • 2015
  • Pigeonpea Sterility Mosaic Disease (PSMD) is an important foliar disease caused by Pigeonpea sterility mosaic virus (PPSMV) which is transmitted by eriophyid mites (Aceria cajani Channabasavanna). In present study, a F2 mapping population comprising 325 individuals was developed by crossing PSMD susceptible genotype (Gullyal white) and PSMD resistant genotype (BSMR 736). We identified a set of 32 out of 300 short decamer random DNA markers that showed polymorphism between Gullyal white and BSMR 736 parents. Among them, eleven DNA markers showed polymorphism including coupling and repulsion phase type of polymorphism across the parents. Bulked Segregant Analysis (BSA), revealed that the DNA marker, IABTPPN7, produced a single coupling phase marker (IABTPPN $7_{414}$) and a repulsion phase marker (IABTPPN $7_{983}$) co-segregating with PSMD reaction. Screening of 325 F2 population using IABTPPN7 revealed that the repulsion phase marker, IABTPPN $7_{983}$, was co-segregating with the PSMD responsive SV1 at a distance of 23.9 cM for Bidar PPSMV isolate. On the other hand, the coupling phase marker IABTPPN $7_{414}$ did not show any linkage with PSMD resistance. Additionally, single marker analysis both IABTPPN $7_{983}$ (P<0.0001) and IABTPPN $7_{414}$ (P<0.0001) recorded a significant association with the PSMD resistance and explained a phenotypic variance of 31 and 36% respectively in $F_2$ population. The repulsion phase marker, IABTPPN7983, could be of use in Marker-Assisted Selection (MAS) in the PPSMV resistance breeding programmes of pigeonpea.

Medicago truncatula in Interaction with Fusarium and Rhizoctonia Phytopathogenic Fungi: Fungal Aggressiveness, Plant Response Biodiversity and Character Heritability Indices

  • Batnini, Marwa;Haddoudi, Imen;Taamali, Wael;Djebali, Naceur;Badri, Mounawer;Mrabet, Moncef;Mhadhbi, Haythem
    • The Plant Pathology Journal
    • /
    • 제37권4호
    • /
    • pp.315-328
    • /
    • 2021
  • Fusarium and Rhizoctonia genera are important pathogens of many field crops worldwide. They are constantly evolving and expanding their host range. Selecting resistant cultivars is an effective strategy to break their infection cycles. To this end, we screened a collection of Medicago truncatula accessions against Fusarium oxysporum, Fusarium solani, and Rhizoctonia solani strains isolated from different plant species. Despite the small collection, a biodiversity in the disease response of M. truncatula accessions ranging from resistant phenotypes to highly susceptible ones was observed. A17 showed relative resistance to all fungal strains with the lowest disease incidence and ratings while TN1.11 was among the susceptible accessions. As an initiation of the characterization of resistance mechanisms, the antioxidant enzymes' activities, at the early stages of infections, were compared between these contrasting accessions. Our results showed an increment of the antioxidant activities within A17 plants in leaves and roots. We also analyzed the responses of a population of recombinant inbred lines derived from the crossing of A17 and TN1.11 to the infection with the same fungal strains. The broad-sense heritability of measured traits ranged from 0.87 to 0.95, from 0.72 to 0.96, and from 0.14 to 0.85 under control, F. oxysporum, and R. solani conditions, respectively. This high estimated heritability underlines the importance of further molecular analysis of the observed resistance to identify selection markers that could be incorporated into a breeding program and thus improving soil-borne pathogens resistance in crops.