DOI QR코드

DOI QR Code

Cathelicidin-related Antimicrobial Peptide Contributes to Host Immune Responses Against Pulmonary Infection with Acinetobacter baumannii in Mice

  • Min-Jung Kang (Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University) ;
  • Ah-Ra Jang (Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University) ;
  • Ji-Yeon Park (Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University) ;
  • Jae-Hun Ahn (Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University) ;
  • Tae-Sung Lee (Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University) ;
  • Dong-Yeon Kim (Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University) ;
  • Do-Hyeon Jung (Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University) ;
  • Eun-Jung Song (Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University) ;
  • Jung Joo Hong (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jong-Hwan Park (Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University)
  • Received : 2020.01.08
  • Accepted : 2020.05.06
  • Published : 2020.06.30

Abstract

Acinetobacter baumannii is known for its multidrug antibiotic resistance. New approaches to treating drug-resistant bacterial infections are urgently required. Cathelicidin-related antimicrobial peptide (CRAMP) is a murine antimicrobial peptide that exerts diverse immune functions, including both direct bacterial cell killing and immunomodulatory effects. In this study, we sought to identify the role of CRAMP in the host immune response to multidrug-resistant Acinetobacter baumannii. Wild-type (WT) and CRAMP knockout mice were infected intranasally with the bacteria. CRAMP-/- mice exhibited increased bacterial colony-forming units (CFUs) in bronchoalveolar lavage (BAL) fluid after A. baumannii infection compared to WT mice. The loss of CRAMP expression resulted in a significant decrease in the recruitment of immune cells, primarily neutrophils. The levels of IL-6 and CXCL1 were lower, whereas the levels of IL-10 were significantly higher in the BAL fluid of CRAMP-/- mice compared to WT mice 1 day after infection. In an in vitro assay using thioglycollate-induced peritoneal neutrophils, the ability of bacterial phagocytosis and killing was impaired in CRAMP-/- neutrophils compared to the WT cells. CRAMP was also essential for the production of cytokines and chemokines in response to A. baumannii in neutrophils. In addition, the A. baumannii-induced inhibitor of κB-α degradation and phosphorylation of p38 MAPK were impaired in CRAMP-/- neutrophils, whereas ERK and JNK phosphorylation was upregulated. Our results indicate that CRAMP plays an important role in the host defense against pulmonary infection with A. baumannii by promoting the antibacterial activity of neutrophils and regulating the innate immune responses.

Keywords

Acknowledgement

This work was supported by the Korea Research Institute of Bioscience and Biotechnology Research Initiative Program (KGM4571922) and Mid-Career Researcher Program (Grant No. 2018R1A2B3004143) of the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (Information and Communication Technologies).

References

  1. Doughari HJ, Ndakidemi PA, Human IS, Benade S. The ecology, biology and pathogenesis of Acinetobacter spp.: an overview. Microbes Environ 2011;26:101-112. https://doi.org/10.1264/jsme2.ME10179
  2. McConnell MJ, Actis L, Pachon J. Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol Rev 2013;37:130-155. https://doi.org/10.1111/j.1574-6976.2012.00344.x
  3. Alsan M, Klompas M. Acinetobacter baumannii: an emerging and important pathogen. J Clin Outcomes Manag 2010;17:363-369.
  4. Cerqueira GM, Peleg AY. Insights into Acinetobacter baumannii pathogenicity. IUBMB Life 2011;63:1055-1060. https://doi.org/10.1002/iub.533
  5. Yan Z, Yang J, Hu R, Hu X, Chen K. Acinetobacter baumannii infection and IL-17 mediated immunity. Mediators Inflamm 2016;2016:9834020.
  6. Fournier PE, Richet H, Weinstein RA. The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin Infect Dis 2006;42:692-699. https://doi.org/10.1086/500202
  7. Rivas-Santiago B, Rivas Santiago CE, Castaneda-Delgado JE, Leon-Contreras JC, Hancock RE, Hernandez-Pando R. Activity of LL-37, CRAMP and antimicrobial peptide-derived compounds E2, E6 and CP26 against Mycobacterium tuberculosis. Int J Antimicrob Agents 2013;41:143-148. https://doi.org/10.1016/j.ijantimicag.2012.09.015
  8. Sigurdardottir T, Andersson P, Davoudi M, Malmsten M, Schmidtchen A, Bodelsson M. In silico identification and biological evaluation of antimicrobial peptides based on human cathelicidin LL-37. Antimicrob Agents Chemother 2006;50:2983-2989. https://doi.org/10.1128/AAC.01583-05
  9. Ciornei CD, Sigurdardottir T, Schmidtchen A, Bodelsson M. Antimicrobial and chemoattractant activity, lipopolysaccharide neutralization, cytotoxicity, and inhibition by serum of analogs of human cathelicidin LL-37. Antimicrob Agents Chemother 2005;49:2845-2850. https://doi.org/10.1128/AAC.49.7.2845-2850.2005
  10. Wertenbruch S, Drescher H, Grossarth V, Kroy D, Giebeler A, Erschfeld S, Heinrichs D, Soehnlein O, Trautwein C, Brandenburg LO, et al. The anti-microbial peptide LL-37/cramp is elevated in patients with liver diseases and acts as a protective factor during mouse liver injury. Digestion 2015;91:307-317. https://doi.org/10.1159/000368304
  11. Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 2011;29:464-472. https://doi.org/10.1016/j.tibtech.2011.05.001
  12. Agier J, Efenberger M, Brzezinska-Blaszczyk E. Cathelicidin impact on inflammatory cells. Cent Eur J Immunol 2015;40:225-235. https://doi.org/10.5114/ceji.2015.51359
  13. Feng X, Sambanthamoorthy K, Palys T, Paranavitana C. The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii. Peptides 2013;49:131-137. https://doi.org/10.1016/j.peptides.2013.09.007
  14. Spencer JJ, Pitts RE, Pearson RA, King LB. The effects of antimicrobial peptides WAM-1 and LL-37 on multidrug-resistant Acinetobacter baumannii. Pathog Dis 2018;76:76.
  15. Itou T, Collins LV, Thoren FB, Dahlgren C, Karlsson A. Changes in activation states of murine polymorphonuclear leukocytes (PMN) during inflammation: a comparison of bone marrow and peritoneal exudate PMN. Clin Vaccine Immunol 2006;13:575-583. https://doi.org/10.1128/CVI.13.5.575-583.2006
  16. Celada A, Gray PW, Rinderknecht E, Schreiber RD. Evidence for a gamma-interferon receptor that regulates macrophage tumoricidal activity. J Exp Med 1984;160:55-74. https://doi.org/10.1084/jem.160.1.55
  17. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 2018;18:134-147. https://doi.org/10.1038/nri.2017.105
  18. Kang MJ, Jang AR, Park JY, Ahn JH, Lee TS, Kim DY, Lee MS, Hwang S, Jeong YJ, Park JH. IL-10 protects mice from the lung infection of Acinetobacter baumannii and contributes to bacterial clearance by regulating STAT3-mediated MARCO expression in macrophages. Front Immunol 2020;11:270.
  19. McDonald PP, Bald A, Cassatella MA. Activation of the NF-κB pathway by inflammatory stimuli in human neutrophils. Blood 1997;89:3421-3433. https://doi.org/10.1182/blood.V89.9.3421
  20. Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, Hohensinner P, Basilio J, Petzelbauer P, Assinger A, et al. Cell type-specific roles of NF-κB linking inflammation and thrombosis. Front Immunol 2019;10:85.
  21. Pillinger MH, Feoktistov AS, Capodici C, Solitar B, Levy J, Oei TT, Philips MR. Mitogen-activated protein kinase in neutrophils and enucleate neutrophil cytoplasts: evidence for regulation of cell-cell adhesion. J Biol Chem 1996;271:12049-12056. https://doi.org/10.1074/jbc.271.20.12049
  22. Sun P, Zhou K, Wang S, Li P, Chen S, Lin G, Zhao Y, Wang T. Involvement of MAPK/NF-κB signaling in the activation of the cholinergic anti-inflammatory pathway in experimental colitis by chronic vagus nerve stimulation. PLoS One 2013;8:e69424.
  23. Geisinger E, Isberg RR. Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii. PLoS Pathog 2015;11:e1004691.
  24. Martin TR, Frevert CW. Innate immunity in the lungs. Proc Am Thorac Soc 2005;2:403-411. https://doi.org/10.1513/pats.200508-090JS
  25. Bals R, Wang X, Zasloff M, Wilson JM. The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci U S A 1998;95:9541-9546. https://doi.org/10.1073/pnas.95.16.9541
  26. Benincasa M, Mattiuzzo M, Herasimenka Y, Cescutti P, Rizzo R, Gennaro R. Activity of antimicrobial peptides in the presence of polysaccharides produced by pulmonary pathogens. J Pept Sci 2009;15:595-600. https://doi.org/10.1002/psc.1142
  27. Byfield FJ, Kowalski M, Cruz K, Leszczynska K, Namiot A, Savage PB, Bucki R, Janmey PA. Cathelicidin LL-37 increases lung epithelial cell stiffness, decreases transepithelial permeability, and prevents epithelial invasion by Pseudomonas aeruginosa. J Immunol 2011;187:6402-6409. https://doi.org/10.4049/jimmunol.1102185
  28. Dean SN, Bishop BM, van Hoek ML. Susceptibility of Pseudomonas aeruginosa biofilm to alpha-helical peptides: D-enantiomer of LL-37. Front Microbiol 2011;2:128.
  29. Yu PL, Cross ML, Haverkamp RG. Antimicrobial and immunomodulatory activities of an ovine proline/arginine-rich cathelicidin. Int J Antimicrob Agents 2010;35:288-291. https://doi.org/10.1016/j.ijantimicag.2009.10.017
  30. Kovach MA, Ballinger MN, Newstead MW, Zeng X, Bhan U, Yu FS, Moore BB, Gallo RL, Standiford TJ. Cathelicidin-related antimicrobial peptide is required for effective lung mucosal immunity in Gram-negative bacterial pneumonia. J Immunol 2012;189:304-311. https://doi.org/10.4049/jimmunol.1103196
  31. van Faassen H, KuoLee R, Harris G, Zhao X, Conlan JW, Chen W. Neutrophils play an important role in host resistance to respiratory infection with Acinetobacter baumannii in mice. Infect Immun 2007;75:5597-5608. https://doi.org/10.1128/IAI.00762-07
  32. Qiu H, KuoLee R, Harris G, Van Rooijen N, Patel GB, Chen W. Role of macrophages in early host resistance to respiratory Acinetobacter baumannii infection. PLoS One 2012;7:e40019.
  33. Kurosaka K, Chen Q, Yarovinsky F, Oppenheim JJ, Yang D. Mouse cathelin-related antimicrobial peptide chemoattracts leukocytes using formyl peptide receptor-like 1/mouse formyl peptide receptor-like 2 as the receptor and acts as an immune adjuvant. J Immunol 2005;174:6257-6265. https://doi.org/10.4049/jimmunol.174.10.6257
  34. Mookherjee N, Hamill P, Gardy J, Blimkie D, Falsafi R, Chikatamarla A, Arenillas DJ, Doria S, Kollmann TR, Hancock RE. Systems biology evaluation of immune responses induced by human host defence peptide LL-37 in mononuclear cells. Mol Biosyst 2009;5:483-496. https://doi.org/10.1039/b813787k
  35. Pistolic J, Cosseau C, Li Y, Yu JJ, Filewod NC, Gellatly S, Rehaume LM, Bowdish DM, Hancock RE. Host defence peptide LL-37 induces IL-6 expression in human bronchial epithelial cells by activation of the NFκB signaling pathway. J Innate Immun 2009;1:254-267. https://doi.org/10.1159/000171533
  36. Lee M, Shi X, Barron AE, McGeer E, McGeer PL. Human antimicrobial peptide LL-37 induces glial-mediated neuroinflammation. Biochem Pharmacol 2015;94:130-141. https://doi.org/10.1016/j.bcp.2015.02.003
  37. Zheng Y, Niyonsaba F, Ushio H, Nagaoka I, Ikeda S, Okumura K, Ogawa H. Cathelicidin LL-37 induces the generation of reactive oxygen species and release of human alpha-defensins from neutrophils. Br J Dermatol 2007;157:1124-1131. https://doi.org/10.1111/j.1365-2133.2007.08196.x
  38. Rivas-Santiago B, Hernandez-Pando R, Carranza C, Juarez E, Contreras JL, Aguilar-Leon D, Torres M, Sada E. Expression of cathelicidin LL-37 during Mycobacterium tuberculosis infection in human alveolar macrophages, monocytes, neutrophils, and epithelial cells. Infect Immun 2008;76:935-941. https://doi.org/10.1128/IAI.01218-07
  39. Kim CH, Jeong YJ, Lee J, Jeon SJ, Park SR, Kang MJ, Park JH, Park JH. Essential role of toll-like receptor 4 in Acinetobacter baumannii-induced immune responses in immune cells. Microb Pathog 2013;54:20-25. https://doi.org/10.1016/j.micpath.2012.08.008
  40. Noto MJ, Boyd KL, Burns WJ, Varga MG, Peek RM Jr, Skaar EP. Toll-like receptor 9 contributes to defense against Acinetobacter baumannii infection. Infect Immun 2015;83:4134-4141. https://doi.org/10.1128/IAI.00410-15
  41. Sabroe I, Dower SK, Whyte MK. The role of Toll-like receptors in the regulation of neutrophil migration, activation, and apoptosis. Clin Infect Dis 2005;41 Suppl 7:S421-S426. https://doi.org/10.1086/431992
  42. Di Nardo A, Braff MH, Taylor KR, Na C, Granstein RD, McInturff JE, Krutzik S, Modlin RL, Gallo RL. Cathelicidin antimicrobial peptides block dendritic cell TLR4 activation and allergic contact sensitization. J Immunol 2007;178:1829-1834. https://doi.org/10.4049/jimmunol.178.3.1829
  43. He Y, Hara H, Nunez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci 2016;41:1012-1021. https://doi.org/10.1016/j.tibs.2016.09.002
  44. Kang MJ, Jo SG, Kim DJ, Park JH. NLRP3 inflammasome mediates interleukin-1β production in immune cells in response to Acinetobacter baumannii and contributes to pulmonary inflammation in mice. Immunology 2017;150:495-505. https://doi.org/10.1111/imm.12704
  45. Bakele M, Joos M, Burdi S, Allgaier N, Poschel S, Fehrenbacher B, Schaller M, Marcos V, Kummerle-Deschner J, Rieber N, et al. Localization and functionality of the inflammasome in neutrophils. J Biol Chem 2014;289:5320-5329. https://doi.org/10.1074/jbc.M113.505636
  46. Hu Z, Murakami T, Suzuki K, Tamura H, Kuwahara-Arai K, Iba T, Nagaoka I. Antimicrobial cathelicidin peptide LL-37 inhibits the LPS/ATP-induced pyroptosis of macrophages by dual mechanism. PLoS One 2014;9:e85765.