• Title/Summary/Keyword: Host layer

Search Result 289, Processing Time 0.025 seconds

A Design of Security Structure in Bare Metal Hypervisor for Virtualized Internal Enviroment of Cloud Service (클라우드 서비스 가상화 내부 환경을 위한 BareMetal Hypervisor 기반 보안 구조 설계)

  • Choi, Do-Hyeon;You, Han-Na;Park, Tae-Seung;Do, Kyoung-Hwa;Jun, Moon-Seog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.7
    • /
    • pp.526-534
    • /
    • 2013
  • With rapid rise of virtualization technology from diverse types of cloud computing service, security problems such as data safety and reliability are the issues at stake. Since damage in virtualization layer of cloud service can cause damage on all host (user) tasks, Hypervisor that provides an environment for multiple virtual operating systems can be a target of attackers. This paper propose a security structure for protecting Hypervisor from hacking and malware infection.

Effects of essential oil (blended and single essential oils) on anti-biofilm formation of Salmonella and Escherichia coli

  • Oh, S.Y.;Yun, W.;Lee, J.H.;Lee, C.H.;Kwak, W.K.;Cho, J.H.
    • Journal of Animal Science and Technology
    • /
    • v.59 no.2
    • /
    • pp.4.1-4.5
    • /
    • 2017
  • Background: Biofilms were the third-dimensional structure in the solid surface of bacteria. Bacterial biofilms were difficult to control by host defenses and antibiotic therapies. Escherichia coli (E. coli) and Salmonella were popular pathogenic bacteria that live in human and animal intestines. Essential oils are aromatic oily liquids from plant materials and well known for their antibacterial activities. Method: This study was conducted to determine effect of essential oil on anti-biological biofilm formation of E. coli and Salmonella strains in in vitro experiment. Two kinds of bacterial strains were separated from 0.2 g pig feces. Bacterial strains were distributed in 24 plates per treatment and each plates as a replication. The sample was coated with a Bacterial biofilm formation was. Result: Photographic result, Escherichia coli (E. coli) and Salmonella bacteria colony surface were thick smooth surface in control. However, colony surface in blended and single essential oil treatment has shown crack surface layer compared with colony surfaces in control. Conclusion: In conclusion, this study could confirm that essential oils have some interesting effect on anti-biofilm formation of E. coli and Salmonella strains from pig feces.

Properties of the Phosphorous Polymer Light Emitting Diodes with PVK:Ir(ppy)$_3$ Emission layer (PVK:Ir(ppy)$_3$ 발광부를 갖는 고분자 인광 발광다이오드의 특성평가)

  • Baek, Seung-Jun;Gong, Su-Cheol;Lee, Ho-Sub;Jang, Seong-Kyu;Chang, Ho-Jung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.363-365
    • /
    • 2010
  • 고분자 발광다이오드(polymer light emitting diode, PLED)는 초박막화, 초경량화가 가능하며 간단한 용액공정 으로 향후 휨성(flexible) 디스플레이로의 응용이 가능할 것으로 기대되고 있다. 본 연구에서는 녹색 고분자 유기 발광다이오드를 제작하고, 효율을 향상 시키고자 이중 발광층을 두어 전기 광학적 특성을 평가하였다. ITO/Glass기판 위에 정공주입층으로 PEDOT:PSS [poly(3,4-ethylenedio xythiophene):poly(styrene sulfolnate)]를 발광물질로는 형광 발광물질인 PVK(poly-vinylcarbazole)와 인광 발광 물질인 Ir(ppy)$_3$[tris(2-phenylpyridine) iridium(III)]를 각각 host와 dopant로 사용하였다. 정공 차단층 및 전자 수송층 두 개의 역할로 사용 가능한 TPBI(1,3,5-tris(2-N-phenylbenzimidazolyl) benzene)를 진공 열증착법으로 막을 형성하였다. 전자주입층으로 LiF(lithium flouride)와 음극으로 Al(aluminum)을 증착하여 최종적으로 ITO/PEDOT:PSS/PVK:Ir(ppy)$_3$/TPBI/LiF/Al 구조를 갖는 녹색 형광:인광 혼합 유기 발광 다이오드를 제작하였다.

  • PDF

Vibration Analysis of Composite-VEM Thin-walled Rotating Beam Using GHM Methodology (GHM 기법을 이용한 회전하는 복합재-VEM 박판보의 진동해석)

  • 박재용;박철휴;곽문규;나성수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.639-647
    • /
    • 2004
  • This paper concerns the analytical modeling and dynamic analysis of advanced rotating blade structure implemented by a dual approach based on structural tailoring and viscoelastic material technology. Whereas structural tailoring uses the directionality properties of advanced composite materials, the passive material technology exploits the damping capabilities of viscoelastic material (VEM) embedded into the host structure. The main structure is modeled as a composite thin-walled beam Incorporating a number of nonclassical features such as transverse shear. anisotropy of constituent materials, and rotary inertia etc. The VEM layer damping treatment is modeled by using the Golla-Hughes-McTavish (GHM) method, which is employed to account for the frequency-dependent characteristics of the VEM. The displayed numerical results provide a comprehensive picture of the synergistic implications of both techniques, namely, the tailoring and damping technology on dynamic response of a thin-walled beam structure exposed to external time-dependent excitation.

Burst capacity of pipe under corrosion defects and repaired with thermosetting liner

  • Akram, Ali;Mustaffa, Zahiraniza;Albarody, Thar M. Badri
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.171-186
    • /
    • 2020
  • This paper aims at providing insights on the use of thermosetting liner for the repair of offshore pipelines exposed to corrosion and leakage. The work which covers both experimental and numerical approaches were aspired due to the high cost of repair for pipelines, limitations of thermoplastic material and limited study of reinforced thermosetting liner. The experiment involves a destruction test called the burst test, carried out on an API 5L X42 carbon steel pipe under four case studies, namely (i) intact pipe, (ii) pipe with corrosion defect, (iii) pipe with corrosion defect and repaired with thermosetting liner and (iv) pipe with leakage and repaired with thermosetting liner. The numerical simulation was developed to first validate the experimental results and later to optimize the design of the thermosetting liner in terms of the number of layers required to restore the original strength of the pipe. The burst test shows an improvement in 23% of the burst capacity for the pipe with corrosion defects, after being repaired with a three-layer thermosetting liner. The parametric studies conducted showed that with an addition of thermosetting layers, the burst capacity improves by an average of 1.85 MPa. In conclusions, the improvement in strength can be further increased with increasing thickness of the thermosetting liner. The thermosetting liner was also determined to fail first inside the host pipe.

Effect of mushroom (Schizophyllum spp.) derived β-glucan on low-fiber diet induced gut dysbiosis

  • Muthuramalingam, Karthika;Singh, Vineet;Choi, Changmin;Choi, Seung In;Park, Sanggyu;Kim, Young Mee;Unno, Tatsuya;Cho, Moonjae
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.2
    • /
    • pp.211-217
    • /
    • 2019
  • Dietary pattern has paramount importance in shaping the gut microbiota and its associated host health. Herein this study, long term (12 weeks) impact of mushroom derived dietary fiber, ${\beta}-glucan$, is investigated for its effect on low fiber diet consumption. Inclusion of dietary fiber into the low fiber diet (LFD) increased the abundance of genera Lactobacillus and Anaerostipes, the microbes responsible for butyrate (major 'fuel source' of colonocytes) production. Mice fed LFD with ${\beta}-glucan$ showed significant increase in the length of small intestine compared to that of the LFD group without ${\beta}-glucan$. Further, dietary fiber consumption enhanced goblet cell density along with mucosal layer thickness. These results indicate promising effects of ${\beta}-glucan$ towards maintenance of healthy gut and gut microbiota.

Pathophysiology and protective approaches of gut injury in critical illness

  • Jung, Chang Yeon;Bae, Jung Min
    • Journal of Yeungnam Medical Science
    • /
    • v.38 no.1
    • /
    • pp.27-33
    • /
    • 2021
  • The gut is a complex organ that has played an important role in digestion, absorption, endocrine functions, and immunity. The gut mucosal barriers consist of the immunologic barrier and nonimmunologic barrier. During critical illnesses, the gut is susceptible to injury due to the induction of intestinal hyperpermeability. Gut hyperpermeability and barrier dysfunction may lead to systemic inflammatory response syndrome. Additionally, gut microbiota are altered during critical illnesses. The etiology of such microbiome alterations in critical illnesses is multifactorial. The interaction or systemic host defense modulation between distant organs and the gut microbiome is increasingly studied in disease research. No treatment modality exists to significantly enhance the gut epithelial integrity, permeability, or mucus layer in critically ill patients. However, multiple helpful approaches including clinical and preclinical strategies exist. Enteral nutrition is associated with an increased mucosal barrier in animal and human studies. The trophic effects of enteral nutrition might help to maintain the intestinal physiology, prevent atrophy of gut villi, reduce intestinal permeability, and protect against ischemia-reperfusion injury. The microbiome approach such as the use of probiotics, fecal microbial transplantation, and selective decontamination of the digestive tract has been suggested. However, its evidence does not have a high quality. To promote rapid hypertrophy of the small bowel, various factors have been reported, including the epidermal growth factor, membrane permeant inhibitor of myosin light chain kinase, mucus surrogate, pharmacologic vagus nerve agonist, immune-enhancing diet, and glucagon-like peptide-2 as preclinical strategies. However, the evidence remains unclear.

A Study on Classification Method for Web Service Attacks Information (웹서비스 공격정보 분류 방법 연구)

  • Seo, Jin-Won;Seo, Hee-Suk;Kwak, Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.99-108
    • /
    • 2010
  • The main contents of this paper is to develope effective measures for Internet Web service attack, classifying vulnerability of Web Service by network layer and host unit and researching classification method by attack range of type of services. Using this paper, we can accumulate analyzed Web service attack information which is key information of promote Web security strengthening business, and basis of relevant security research for detect and response Web site attack which can contribute to activation information security industry.

Evaluation of dissolution characteristics of magnetite in an inorganic acidic solution for the PHWR system decontamination

  • Ayantika Banerjee ;Wangkyu Choi ;Byung-Seon Choi ;Sangyoon Park;Seon-Byeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1892-1900
    • /
    • 2023
  • A protective oxide layer forms on the material surfaces of a Nuclear Power Plant during operation due to high temperature. These oxides can host radionuclides, the activated corrosion products of fission products, resulting in decommissioning workers' exposure. These deposited oxides are iron oxides such as Fe3O4, Fe2O3 and mixed ferrites such as nickel ferrites, chromium ferrites, and cobalt ferrites. Developing a new chemical decontamination technology for domestic CANDU-type reactors is challenging due to variations in oxide compositions from different structural materials in a Pressurized Water Reactor (PWR) system. The Korea Atomic Energy Research Institute (KAERI) has already developed a chemical decontamination process for PWRs called 'HyBRID' (Hydrazine-Based Reductive metal Ion Decontamination) that does not use organic acids or organic chelating agents at all. As the first step to developing a new chemical decontamination technology for the Pressurized Heavy Water Reactor (PHWR) system, we investigated magnetite dissolution behaviors in various HyBRID inorganic acidic solutions to assess their applicability to the PHWR reactor system, which forms a thicker oxide film.

Chimie Douce Reaction to Layered High-$T_c$ Superconducting / Super-ionic Conducting Heterostructures

  • Kim, Young-Il;Hwang, Seong-Ju;Yoo, Han-Ill;Choy, Jin-Ho
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.95-98
    • /
    • 1998
  • We have developed new type of superconducting-superionic conducting nanohybrids, $Ag_xI_wBi_2Sr_2Ca_{n-1}Cu_nO_y$ (n=1 and 2) by applying the chimie douce reaction to the superconducting Bi-based cuprates. These nanohybrids can be achieved by the stepwise intercalation whereby the $Ag^+$ ion is thermally diffused into the pre-intercalated iodine sublattice of $IBi_2Sr_2Ca_{n-1}Cu_nO_y$. According to the X-ray diffraction analysis, the Ag-I intercalates are found to have an unique heterostructure in which the superionic conducting Ag-I layer and the superconducting $IBi_2Sr_2Ca_{n-1}Cu_nO_y$ layer are regularly interstratified with a remarkable basal increment of ~7.3$\AA$. The systematic XAS studies demonstrate that the intercalation of Ag-I accompanies the charge transfer between host and guest, giving rise to a change in hole concentration of $CuO_2$ layer and to a slight $T_c$ change. The Ag K-edge EXAFS result reveals that the intercalated Ag-I has a $\beta$-AgI-like local structure with distorted tetrahedral symmetry, suggesting a mobile environment for the intercalated $Ag^+$ ion. In fact, from ac impedance analyses, we have found that the Ag-I intercalates possess a fast ionic conductivity ($\sigma_i=10^{-1.4}\sim 10^{-2.6}\Omega^{-1}\textrm{cm}^{-1}\;at\;270^{\circ}C$ with an uniform activation energy ($\DeltaE_a=0.22\pm 0.02$ eV). More interesting finding is that these intercalates exhibit high electronic conducting as well as ionic ones ($t_i$=0.02~0.60) due to their interstratified structure consisting of superionic conducting and superconducting layers. In this respect, these new intercalates are expected to be useful as an electrode material in various electrochemical devices.

  • PDF