• Title/Summary/Keyword: Horticultural crops

Search Result 375, Processing Time 0.023 seconds

Effect of Breathable Film for Modified Atmosphere Packaging Material on the Quality and Storability of Tomato in Long Distance Export Condition (MAP 포장재인 숨쉬는 필름이 장거리 수출 조건에서 토마토의 품질과 저장성 향상에 미치는 영향)

  • Islam, Mohammad Zahirul;Kim, Young-Shik;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.20 no.3
    • /
    • pp.221-226
    • /
    • 2011
  • The study was carried out to investigate the effect of MA packaging materials on quality and storability of tomato in long distance export condition. We found that the fresh weight loss in perforated film was higher than other breathable films. The fresh weight of tomato (cv 'Madison') packaged with breathable films, such as 5,000 cc, 10,000 cc, $20,000cc/m^2{\cdot}day{\cdot}atm$ oxygen permeable films, reduced less than 0.6%, but perforated film that already being used for packaging horticultural crops showed 1.4% fresh weight loss during $5^{\circ}C$ storage for 20 days and then $20^{\circ}C$ storage for last 5 days with 85% relative humidity. The carbon dioxide and oxygen concentration in tomato packages showed proper level for MA storage in $20,000cc/m^2{\cdot}day{\cdot}atm$ $O_2$ breathable film treatment at $5^{\circ}C$ storage. Although at $20^{\circ}C$ storage, the carbon dioxide concentration increased sharply, the oxygen concentration decreased remarkably, the change of these gases concentration was the lowest in 20,000 cc film treatment. The ethylene concentration was sharply increased at $20^{\circ}C$ from $21^{st}$ day to $25^{th}$ day after $5^{\circ}C$ storage for 20 day, and the concentration was lower in 20,000 cc film treatment among the breathable film treatments. Until 20 days, at $5^{\circ}C$ storage all treatments did not exceed the marketability. However, the last 5 days during at $20^{\circ}C$, the fruit appeared fungal rots and the quality rapidly decreased. The $20,000cc/m^2{\cdot}day{\cdot}atm$ $O_2$ permeability treated tomato performed higher firmness (9.56 N), vitamin C (16.31 mg/100 gFW), and soluble solids ($7^{\circ}Brix$) than other breathable films at final storage day. The results suggest that the $20,000cc/m^2{\cdot}day{\cdot}atm$ $O_2$ permeable film treatment of tomato (cv 'Madison') performed the highest quality and storability of tomato for long distance exporting.

Characteristics of Fertility on Strawberry Cultivated Soil of Plastic Film House in Chungnam Province in Korea (충남지역 시설 딸기재배 토양 비옥도 특성)

  • Choi, Moon-Tae;Lee, Jin-Il;Yun, Yeo-Uk;Lee, Jong-Eun;Lee, Bong-Chun;Yang, Euy-Seog;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.160-165
    • /
    • 2010
  • To reduce the dose of fertilizers is very important to sustainable production of many horticultural crops, including strawberry. In order to practice the environment friendly agriculture of strawberry cultivation in plastic film house, soil chemical properties of 435 soil samples (232 for loam, 83 for sandy loam, and 120 for silt loam) in Chungnam Province from2008 to 2009 were determined. The average of pH, EC, OM, Av. $P_2O_5$, Ex. $K^+$, Ex. $Ca^{2+}$, Ex. $Mg^{2+}$, and Ex. $Na^+$ was 6.5, 2.28 dS $m^{-1}$, 26 g $kg^{-1}$, 910 mg $kg^{-1}$, 1.09 $cmol_c\;kg^{-1}$, 8.3 $cmol_c\;kg^{-1}$, 2.5 $cmol_c\;kg^{-1}$, and 0.58 $cmol_c\;kg^{-1}$, respectively. The content of Av. $P_2O_5$ in sandy loam soil was significantly higher than silt loam soil, whereas other properties showed no difference between soil texture. The kinds of strawberry cultivars showed no difference in soil chemical properties. The frequency distribution within optimum range of soil chemical properties was 30.6%, 35.4%, 37.0%, 5.3%, 8.5%, 8.5%, and 17.9% for pH, EC, OM, Av. $P_2O_5$, Ex. $K^+$, Ex. $Ca^{2+}$, and Ex. $Mg^{2+}$, respectively. Especially, excessive portion of Av. $P_2O_5$, and Ex. $Ca^{2+}$ were high 86.9%, and 86.0%, respectively. EC values of soil samples were significantly positive correlatoin with all chemical properties except soil pH. In principle component analysis of chemical properties in soil samples, the percentage of variance explained by PC 1 was 38.8%, while PC 2 explained 17.8%of the variance, for a cumulative total of 56.6%. These results were able to distinguish between soil textures and strawberry cultivars. Also, these results considered that understanding of soil chemical properties under using principal component analysis be able to improve amounts of fertilizers for sustainable agriculture in plastic film house.

Monitoring Technique of Pumpkin Fruit Flies Using Terpinyl Acetate-Protein Diet Lure and Development of Its Spraying Formulation for The Fly Control (Terpinyl acetate-단백질먹이 유인제를 이용한 호박과실파리류 연중발생 모니터링 기술 및 살포용 방제 제형 개발)

  • Kim, Yonggyun;Ahn, Jeong Joon
    • Korean journal of applied entomology
    • /
    • v.59 no.1
    • /
    • pp.15-22
    • /
    • 2020
  • Two tephritid fruit flies are infesting pumpkins in Korea. Both are classified into genus of Zeugodacus. The striped fruit fly, Z. scutellata, males are attracted to a lure called Cuelure (CL), which has been used to monitor the occurrence of this fruit fly in the crop field. In contrast, no effective male lure was not developed to monitor the pumpkin fruit fly, Z. depressa. Protein diet lure has been used to attract females of most fruit flies. The addition of terpinyl acetate (TA) was effective to increase the attractiveness of Z. depressa. This study aimed to monitor the occurrence of Z. depressa in pumpkin field with TA-protein diet lure. To validate the efficiency of TA-protein diet lure, Z. scutellata was monitored in a year of 2019 using CL and TA-protein diet lures, and the yearly monitoring data were compared. The occurrence patterns derived from both lures were similar except late season after October. The extended catches of TA-protein diet lure might be explained by the adult diapause induction of Z. scutellata at late September. Monitoring Z. depressa with TA-protein diet lure gave two peaks at mid July and August-September, in which more than 80% catches were females. Based on the attractiveness of TA-protein diet lure, its wettable powder with an addition of spinosad insecticide was formulated and sprayed to pumpkin crops. After 7 days post-spray, the control efficacy recorded more than 70%. However, the control efficacies decreased as the time progressed after the spray. These results demonstrated the application of TA-protein diet lure for monitoring occurrence of Z. depressa in pumpkin-cultivating field conditions. The wettable powder containing spinosad can be applied to develop a new control agent against two pumpkin fruit flies.

Changes in Inorganic Element Concentrations of Drained Nutrient Solution and Leaves in Compliance with Numerical Increment of Fruiting Node during Hydroponic Cultivation of Cherry Tomato (방울토마토 수경재배 시 착과 절위 증가에 따른 공급액, 배액 및 식물체의 무기성분 농도 변화)

  • Lee, Eun Mo;Park, Sang Kyu;Kim, Gyoung Je;Lee, Bong Chun;Lee, Hee Chul;Yun, Yeo Uk;Park, Soo Bok;Choi, Jong Myoung
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.361-367
    • /
    • 2017
  • Production cost as well as environmental contamination can be reduced by reuse of drained nutrient solution in hydroponic. This research was conducted to obtain the information in changes in inorganic elements concentration of supplied and drained nutrient solution as well as of plant leaves. To achieve the objective, the samples of supplied and drained solution and cherry tomato leaf tissues were periodically collected and analyzed during the hydroponic cultivation. The electrical conductivity (EC) of supplied and drained nutrient solution in early growth stage of cherry tomato were measured as around $2.0dS{\cdot}m^{-1}$, but those values move up with the passage of time reaching to $2.0dS{\cdot}m^{-1}$ at flowering stage of 9th fruiting node. The pHs of drained solution in early growth stage were 6.4 to 6.7, however those showed a tendency to get lowered to 5.9 to 6.1 as time passed during the crop cultivation. The concentration differences of $NO_3-N$, P, K, Ca, and Mg between supplied and drained solution were not distinctive until flowering stages of 4th fruiting nodes, while those in drained solution moved up after the stage. The tissue N contents of leaves decrease gradually and those of K and Ca increased as crops grew. However, Tissue P and Mg contents were maintained similarly from transplant to end-crop. The above results would be used in correction of drained nutrient solution when element compositions are varied compared to supplied solution in hydroponic cultivation of tomatoes.

Isolation and functional analysis of three microsomal delta-12 fatty acid desaturase genes from Camelina sativa (L.) cv. CAME (카멜리나 (Camelina sativa L. cv. CAME)로부터 3 microsomal delta-12 fatty acid desaturase 유전자들의 분리 및 기능 분석)

  • Kim, Hyojin;Go, Young Sam;Kim, Augustine Yonghwi;Lee, Sanghyeob;Kim, Kyung-Nam;Lee, Geung-Joo;Kim, Gi-Jun;Suh, Mi Chung
    • Journal of Plant Biotechnology
    • /
    • v.41 no.3
    • /
    • pp.146-158
    • /
    • 2014
  • Camelina sativa that belongs to Brassicaceae family is an emerging oilseed crop. Camelina seeds contain approximately 40% storage oils per seed dry weight, which are useful for human and animal diets and industrial applications. Microsomal delta-12 fatty acid desaturase2 (FAD2) catalyzes the conversion of oleic acid to linoleic acid. The polymorphisms of FAD2 genes are correlated with the levels of oleic acids in seed oils. Microsomal delta-12 fatty acid desaturase2 (FAD2) catalyzes the conversion of oleic acid to linoleic acid. The polymorphisms of FAD2 genes are correlated with the levels of oleic acids in seed oils. In this study, three CsFAD2 genes (CsFAD2-1, CsFAD2-2 and CsFAD2-3.1) were isolated from developing seeds of Camelina sativa (L.) cv. CAME. The nucleotide and deduced amino acid sequences of three CsFAD2 genes were compared with those from dicotyledon and monocotyledon plants including Camelina cultivars Sunesone and SRS933. Three histidine motifs (HECGH, HRRHH, and HVAHH) required for FAD activity and a hydrophobic valine or isoleucine residue, which is a SNP (single nucleotide polymorphism) marker related with enzyme activity are well conserved in three CsFAD2s. The expressions of CsFAD2-1 and CsFAD2-3.1 were ubiquitously detected in various Camelina organs, whereas the CsFAD2-2 transcripts were predominantly detected in flowers and developing seeds. The contents of oleic acids decreased, whereas the amounts of linoleic acid increased in dry seeds of transgenic fad2-2 lines expressing each CsFAD2 gene compared with fad2-2 mutant, indicating that three CsFAD2 genes are functionally active. The isolated CsFAD2 genes might be applicable in metabolic engineering of storage oils with high oleic acids in oilseed crops.

Salt Accumulation in Horticultural Soils of PE Film House in Chungbuk Area (충북지역(忠北地域) 시설원예재배지(施設園藝栽培地) 토양(土壤)의 염류집적(鹽類集積) 실태조사(實態調査))

  • Yuk, Chang-Soo;Kim, Jai-Joung;Hong, Soon-Dal;Kang, Bo-Goo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.3
    • /
    • pp.172-180
    • /
    • 1993
  • Chemical properties of the soils were surveyed in the field of vinyl houses concentrated in the area of Bunpyong-dong and Shinchon-dong of Cheongju, Chilgeum-dong of Chungju and Gageum-myeon of Jungweon-gun. Chungcheongbuk-do province. 1. Content of chemical component of the soil in the vinyl house was higher than in open field. In more than half of the vinyl house soils surveyed, electric conductivity was more than 4.0 mmhos/cm and available phosphate was more than 1,000ppm. 2. Contents of availble phosphate and exchangeable potassium were increased with years of cultivation and their content of accumulation in soil were in the order of Bunpyong-dong>Shinchon-dong>Gageum-myeon>Chilgeum-dong. While their mobility was comparatively low. 3. $NO_3$-N content was remarkably higher in vinyl house soil and the older in cultivation made $NO_3$-N content higher same as the case of available phosphate content. However easy leaching of $NO_3$-N through soil profile is expected due to the fact that $NO_3$-N content was rapidly decreased by removal of polyethylene film cover from the frame of house after harvest of crops. 4. It is a tendency that various chemical contents of vinyl house soils wer higher in 1992 than in 1988~1990, especially much higher from the area of Bunpyong-dong and Shinchon-dong of Cheongju. 5. Salt accumulation in vinyl house soil has been increased with continuing cultivation. Therefore amount of fertilizer application should be controlled in order to avoid salt toxicity, quality deterioration for crop and salt contamination of ground water.

  • PDF

Growth of Potato Plantlets (Solanum tuberosum L. cv. Dejima) in Photoautotrophic Micropropagation System at Different Light Intensities and $CO_2$ Concentrations and Decision of Optimum Environment Conditions with Growth Stage by Modelling (광독립영양 기내 미세증식시스템에서 광강도 및 $CO_2$ 농도에 따른 감자 소식물체 생육분석 및 모델링에 의한 생육단계별 적정 환경조건 설정)

  • Son, Jung-Eek;Lee, Hoon;Oh, Myung-Min
    • Journal of Bio-Environment Control
    • /
    • v.18 no.1
    • /
    • pp.15-22
    • /
    • 2009
  • Adequate environment conditions with growth stage of potato were decided in a photoautotrophic micropropagation system using models. Total 20 day-period of growth were divided into three growth periods such as 6 (stage 1), 7(stage 2), and 7(stage 3) days. At the 1st stage, no significant differences were observed in the growth of potato plantlets at various photosynthetic photon flux density (PPFD) and $CO_2$ conditions. Considering damaged leaves, $80\;mmol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and ambient $CO_2$ level were adequate in this stage. At the 2nd stage, significant differences were partly observed in several growth characteristics including dry weight. Based on the dry matter model, over $240\;mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD was too high to cultivate potato plantlets at this stage due to the occurrence of damaged leaves. Considering both plant growth and energy efficiency, $160\;mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and $700\;mol{\cdot}mol^{-1}\;CO_2$ were selected for the adequate combination. At the 3rd stage, the biomass accumulation was significantly induced in potato plantlets under higher levels of PPFD and $CO_2$ concentration as suggested by increased fresh and dry weights. However, we could not find the saturated point with regard to dry matter due to continuous increase of dry mater even under maximum PPFD ($320\;mmol{\cdot}m^{-2}{\cdot}s^{-1})$. Thus, $320\;mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and $1800\;mol{\cdot}mol^{-1}\;CO_2$ were considered as the best choice at final stage in this study. In conclusion, even though the growth period of micropropagated potato plantlets was quite a short, favorable environmental conditions required at each growth stage were different. This technique could improve the growth of micropropagated plantlets compared to the conventional micropropagation and apply to other agriculturally important crops as well as potato in the future.

Characterization of Weed Occurrence in Major Horticultural Crops - III. Phenological Aspects of Major Weeds (원예경작지(園藝耕作地)에서의 잡초발생(雜草發生) 특성에 관(關)한 연구(硏究) - III. 주요잡초종(主要雜草種)의 발생계절성(發生季節性))

  • Woo, I.S.;Pyon, J.Y.;Guh, J.O.
    • Korean Journal of Weed Science
    • /
    • v.9 no.2
    • /
    • pp.130-140
    • /
    • 1989
  • 1) Dormancy brocken weed seeds were planted in soil at 15 days interval from June to December in 1986 and 1987 and test of normality and normal distribution curve were made to determine seasonal distribution characteristics of weed emergence in fields. Monthly emergence distribution pattern of each species can be concluded as following normal distribution equations. E. crusgalli $y={\frac{1}{2.52{\sqrt{2{\pi}}}}}e^{-{\frac{(x-10.057)^2}{12.7}}}$ E. indica $y={\frac{1}{2.17{\sqrt{2{\pi}}}}}e^{-{\frac{(x-9.16)^2}{9.45}}}$ A. lividus $y={\frac{1}{7.74{\sqrt{2{\pi}}}}}e^{-{\frac{(x-10.06)^2}{15.46}}}$ S. nigrum $y={\frac{1}{2.7{\sqrt{2{\pi}}}}}e^{-{\frac{(x-9.695)^2}{14.58}}}$ C. busrsa-pastoris $y={\frac{1}{2.83{\sqrt{2{\pi}}}}}e^{-{\frac{(x-9.02)^2}{16.02}}}$ D. sanguinalis $y={\frac{1}{2.8{\sqrt{2{\pi}}}}}e^{-{\frac{(x-8.58)^2}{15.67}}}$ S. viridis $y={\frac{1}{2.72{\sqrt{2{\pi}}}}}e^{-{\frac{(x-9.36)^2}{14.8}}}$ C. album $y={\frac{1}{2.596{\sqrt{2{\pi}}}}}e^{-{\frac{(x-8.07)^2}{13.48}}}$ P. oleraeda $y={\frac{1}{2.45{\sqrt{2{\pi}}}}}e^{-{\frac{(x-10.83)^2}{12.01}}}$ 2) Emergence peak period of weed species tested were from the end of May to early August and yearly variation of emergence was observed in E. crus-galli, S. viridis, S, nigrum, and P. oleracea and this fact may more related to rainfall pattern rather than temperature.

  • PDF

Evaluation of Fertilization Effect of Slow-Release Complex Fertilizer on Pepper Cultivation (원예용 완효성 복합비료의 고추에 대한 시비효과 평가)

  • Lee, Chang-Hoon;Lee, Hyub;Ha, Byung-Hyun;Kang, Chang-Sun;Lee, Yong-Bok;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.3
    • /
    • pp.228-232
    • /
    • 2007
  • Slow-release fertilizers (SRF) have been used to reduce nutrient loss through increasing fertilizer efficiency and to save labor. Several SRFs were developed for rice plant in Korea, but there is few for horticultural crop plants. Two slow-release complex fertilizers, 100T and 150T, which made for controlling nitrogen release time up to 100 and 150 days, respectively, were selected for the incubation test cto evaluate nitrogen (N) release rate in soil. The N of urea selected as the control was completely released within a week after application. Sixty three and 53% of total N were released from 110T and 150T of slow release fertilizers within 8th weeks after application, respectively. For pepper cultivation CF110 and CF150, new slow-release complex fertilizer, were made of mixing 40% of conventional fertilizer and 60% of 110T and 150T, respectively, based on the amount of recommended fertilizer for pepper cultivation $(N-P_2O_5-K_2O=190-112-149\;kg\;ha^{-1})$, and were totally applied before pepper transplanting in the field as the basal fertilizer. Inorganic N $(NH_4^+-N+NO_3^--N)$ concentration in soil was higher in the CF110 treatment than in the control (NPK) at all period of pepper cultivation. In the CF150 treatment concentration of inorganic N in soil was low compared to control up to 8th weeks after transplanting. However, there was no difference in plant height and nutrient content of pepper leave between CF110 treatment and the control. In comparison, plant height was significantly lower in CF150 than the control and CF110 treatments. Around 4% of fresh pepper yield was increased in CF110 compared to the control, but it was decreased to about 2% by CF150 treatment. Conclusively, CF110 form could be recommended as a slow release fertilizer for pepper cultivation.

Growth Response of Lettuce to Various Levels of EC and Light Intensity in Plant Factory (배양액 농도와 광도가 식물공장에서 재배되는 적축면 상추의 생장에 미치는 영향)

  • Cha, Mi Kyung;Kim, Ju-Sung;Cho, Young Yeol
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.305-311
    • /
    • 2012
  • To investigate the influence electrical conductivity (EC) of nutrient solution and light intensity on growth of red leafy lettuce, fresh and dry weights, number of leave, chlorophyll concentration and production efficiency were evaluated through nutrient film technique system. The levels of EC were 0.5, 1.0, 1.5, 2.0, 3.0, and $6.0dS{\cdot}m^{-1}$, and those of light intensity were 120, 150, and $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Under photoperiod of 16 h/day, the temperature was maintained in the range of $20{\sim}25^{\circ}C$. Planting density was $10{\times}10cm$ (100 plants/$m^2$). When red leafy lettuce were grown in the EC range of $0.5{\sim}1.5dS{\cdot}m^{-1}$, the fresh and dry weights decreased as the EC levels and light intensity were lowered, however, Hunter's a value showed no significant differences among the treatments of EC and light intensity levels (Ex. 1). The fresh and dry weights and production efficiency ($g{\cdot}FW/kw$) were the highest in the treatment of $3.0dS{\cdot}m^{-1}$ and $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ when crops were grown under the EC range of EC $1.5{\sim}6.0dS{\cdot}m^{-1}$ (Ex. 2). But the fresh and dry weights, number of leaves, and production efficiency of $2.0dS{\cdot}m^{-1}$ were the highest when the light intensity was $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ (Ex. 3). The SPAD value increased gradually as EC levels were elevated. From the above results, we concluded that optimum levels of EC and light intensity were $2.0dS{\cdot}m^{-1}$ and $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively, for production as well as production efficiency of red leaf lettuce in plant factory.