• Title/Summary/Keyword: Horizontal shear

Search Result 657, Processing Time 0.028 seconds

Experimental Study on Structural Behavior of Interfaces of Double Composite Girder Using the 80 MPa Concrete (80 MPa급 콘크리트를 활용한 이중합성 거더의 수평접합면 구조거동에 관한 실험적 연구)

  • Yang, In-Wook;Lim, Eol;Ha, Tae-Yul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.400-413
    • /
    • 2016
  • The horizontal shear capacity when the flange of a steel girder is replaced with 80 MPa concrete is important for its structural safety. In this study, 6 specimens with different interface conditions were designed and fabricated based on the Limit State Design Code on Korean Highway Bridges and static tests were performed to measure the horizontal shear capacity. Not only the resistance factors of the stud shear connector, concrete and reinforcement, but also the surface conditions of the casing concrete and spacing of the horizontal shear reinforcements were used as the experimental variables. The experiments showed that the interfaces between the steel girder and the concrete flange have stronger joint performance than those between the concrete flange and deck slab. To ensure the composite action in the plastic zone, the conservative horizontal shear reinforcement is more important than the roughness in the concrete face.

Behavior of Steel-Concrete Composite Decks for PSC Girder Bridge with Various Shear Span Lengths (전단 지간의 변화에 따른 PSC 거더용 강-콘크리트 합성 바닥판의 역학적 거동)

  • Kim, Tae-Hyup;Park, Jun-Myung;Hong, Sung-Nam;Park, Sun-Kyu;Kim, Hyeong-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.275-281
    • /
    • 2007
  • Recently, steel-concrete composite structures are widely used in bridge and building constructions. In this paper, a new type of steel-concrete composite deck with profiled steel sheeting is proposed to replace the conventional cast-in-place reinforced concrete deck. Perfobond rib shear connectors were utilized to provide horizontal shear resistance between the profiled sheeting and the concrete. To validate the effectiveness of the proposed deck system, 8 full-scale deck specimens for PSC girder bridge were fabricated. The specimens were tested with four different shear span lengths to determine the horizontal shear resistance of the deck under a static monotonic loading. For comparison purpose, two reinforced concrete decks were also fabricated and tested. The horizontal shear resistance of the proposed deck system was calculated using the m-k method.

Behavior of PSC Composite Bridge with Precast Decks (프리캐스트 바닥판 PSC 합성거더 교량의 거동)

  • Chung, Chul Hun;Hyun, Byung Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.873-880
    • /
    • 2006
  • PSC composite bridge with precast decks which was designed by the proposed horizontal shear equation was fabricated. Fatigue test was performed to evaluate the endurance of shear connection and the behavior of PSC composite bridge. After all the fatigue loading were applied, no crack and no residual slip were occurred. The flexural stiffness of PSC composite bridge was maintained the initial value, and demage of shear connection was not occurred. To verify the applicability of horizontal shear equation and shear connection detail and to evaluate the strength of PSC composite bridges, static test was also executed. PSC composite bridges with precast decks had 2.08 safety factor which was the ratio of crack to serviceability load and showed ductile behavior after ultimate load. Test results showed that the proposed design equation of the shear connection gave reasonable horizontal shear connection design. Fast and easy construction would be achieved using the suggested precast system.

Shear Key Design of Concrete Track on Bridge (교량구간 콘크리트궤도의 전단키 설계)

  • Back, Hyo-Sun;Lee, Ho-Ryong;Bae, Sang-Hwan;Cho, Hyun-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3251-3255
    • /
    • 2011
  • Being the concrete track laid on bridge, due to track-bridge temperature difference, traction and brake force, and nosing force, the horizontal force can be applied to the track slab. Therefore, shear key structures to resist this horizontal force should be installed. The shear key structures installed in the Kyeong-Bu high-speed line are consisted of four shear keys at every slab with the length of 6 to 8m. However, in the point of view of construction, it is more advantageous to curtail the numbers of shear keys, and thus, the numbers and spacing of the shear keys should be carefully determined. In this study, hence, the effects of slab length, the numbers and spacing of the shear keys on design of shear key and track slab are examined.

  • PDF

Evaluation and Improvement of Structural Performance of Reinforced Shear Walls Under Load Reversals (철근콘크리트 내진벽의 구조성능 평가 및 개선)

  • 신종학;하기주;안준석;주정준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.683-688
    • /
    • 1999
  • The purpose of this study is to develop and evaluate the structural performance of various shear walls, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. under load reversals. For the diagonal reinforced slit and infilled shear wall specimens, it was found that the failure mode shows very effective crack control and crashing due to slippage prevention of boundary region and reduction of diagonal tension rather than the brittle shear and diagonal tension failure. The ductility of specimens designed by the diagonal reinforcement for the slit and infilled shear wall was increased 1.72~1.81 times in comparison with the fully rigid shear wall frame. Maximum horizontal load-carrying capacity of specimens designed by the diagonal reinforcement ratio the slit and infilled shear wall was increased respectively by 1.14 times and 1.49 times in comparison with the standard fully rigid shear wall frame.

  • PDF

Structural Performance Evaluation of Reinforced Concrete Shear Walls with Various Connection Type Under Load Reversals. (반복하중을 받는 철근콘크리트 전단벽체의 접합방식에 따른 구조성능 평가)

  • 신종학;하기주;권중배;전찬목
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.513-518
    • /
    • 1997
  • In this study, nine reinforced concrete infilled frames involved bare frames were tested during vertical and cyclic loads simultaneously. This test programs were carried to investigate the horizontal strength and the crack propagation in variance with hoop reinforcement ratio. All specimens were modeling in one-third scale size. In this experimental program structural performance of reinforced concrete shear wall were focus at connection types. Based on the test results, the following conclusions are made. In the boundary column member of reinforced concrete shear wall, increasing the ratio of hoop bar in two or three times, in the fully babel type, the shear and horizontal strength of specimens were increased 1.1-1.2 times than that of fully rigid frame. And infilled shear wall specimen were increased 1.17-1.27 times than that. Fully rigid babel type shear wall specimens were increased 5.7~8.0 times, and infilled shear wall specimens were increased about 4.0~5.6 times than that of infilled shear wall specimens.

  • PDF

Fracture Analysis of Flexural-Shear Failure in RC Beams (철근콘크리트보의 휨-전단균열에 대한 파괴역학적 해석)

  • Lim, Cheol-Won;Kim, Dae-Joong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.418-423
    • /
    • 1998
  • This paper is intended to investigate the behavior of flexural-shear cracking in reinforced concrete beams without web reinforcement with FEM incorporated into a linear elastic fracture mechanics approach(LEFM). Each crack was propagated progressively by a finite length, then the quantitative reponses were examined. The results show that the horizontal crack was initiated by the bond-jnduced shear stress due to horizontal shearing action of the T-C force couple after the formation of the critical flexural crack. Also, the horizontal crack is considered to be a major factor of shear failure in slender reinforced concrete beams without web reinforcement.

  • PDF

The Effects on Horizontal Web Reinforcements for Reinforced High Strength Concrete Deep Beams (춤이 깊은 고강도 철근콘크리트 보의 수평전단철근 효과에 관한 연구)

  • 신성우;성열영;안종문;이광수;박무용;김형준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.337-344
    • /
    • 1996
  • Reinforced concrete deep beams with conpressive strengths in the range of 500kg/$\textrm{cm}^3$~750kg/$\textrm{cm}^3$ were tested under two-point loding. All the beams were singly reinforced with main steel percent $\rho$=1.29% and with nominal percentage of vertical shear reinflrcements $\rho_v$=0.26%. According to shear-span to depth ratio a/d. The beams were tested for four horizontal shear reinforcement ratio $\rho_h$, ranging from$\rho_h$=0.0 to $\rho_h$=0.53. The results indicate that the horizontal shear reinforcements of beams have an effect on failure load and on ductile behavior of deep beams. The test results are compared with predictions based on the current ACI Building Code. The computated reports in the paper will have designers assured for design of high strength concrete deep beam. Though ACI Code is relatively conservative and tend to non-economical, ACI Code has the merit that is easy to use.

  • PDF

Behaviour of RC Beams with non-bonded flexural reinforcement: A numerical experiment

  • Kotsovou, Gregoria M.;Kotsovos, Gerasimos M.
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.165-178
    • /
    • 2016
  • The present work is concerned with a numerical investigation of the behaviour of reinforced-concrete beams with non-bonded flexural tension reinforcement. The numerically-established behaviour of such beams with and without transverse reinforcement is compared with its counterpart of similar beams with bonded reinforcement. From the comparison, it is found that the development of bond anywhere within the shear span inevitably leads to inclined cracking which is the cause of 'shear' failure. On the other hand, the lack of bond within the shear span of the beams is found, not only to prevent cracking within the shear span, but, also, to lead to a flexural type of failure preceded by the formation of horizontal splitting of concrete in the compressive zone. It is also found that delaying the extension of horizontal splitting through the provision of transverse reinforcement in the beam mid span can lead to flexural failure after yielding of the tension reinforcement. Yielding of the tension reinforcement before the horizontal splitting of the compressive zone may also be achieved by reducing the amount of the latter reinforcement.

Horizontal stiffness solutions for unbonded fiber reinforced elastomeric bearings

  • Toopchi-Nezhad, H.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.395-410
    • /
    • 2014
  • Fiber Reinforced Elastomeric Bearings (FREBs) are a relatively new type of laminated bearings that can be used as seismic/vibration isolators or bridge bearings. In an unbonded (U)-FREB, the bearing is placed between the top and bottom supports with no bonding or fastening provided at its contact surfaces. Under shear loads the top and bottom faces of a U-FREB roll off the contact supports and the bearing exhibits rollover deformation. As a result of rollover deformation, the horizontal response characteristics of U-FREBs are significantly different than conventional elastomeric bearings that are employed in bonded application. Current literature lacks an efficient analytical horizontal stiffness solution for this type of bearings. This paper presents two simplified analytical models for horizontal stiffness evaluation of U-FREBs. Both models assume that the resistance to shear loads is only provided by an effective region of the bearing that sustains significant shear strains. The presented models are different in the way they relate this effective region to the horizontal bearing displacements. In comparison with experimental results and finite element analyses, the analytical models that are presented in this paper are found to be sufficiently accurate to be used in the preliminary design of U-FREBs.