• Title/Summary/Keyword: Horizontal shear

Search Result 660, Processing Time 0.022 seconds

Shear Capacity Evaluation of Steel Plate Anchors Using Folded Steel Plate in AU-composite Beam (절곡 강판을 이용한 AU합성보 덮개형 강재앵커의 전단성능 평가)

  • Lim, Hwan Taek;Choi, Byong Jeong
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.5
    • /
    • pp.389-400
    • /
    • 2017
  • Based on U-shaped composite beam, the new form of AU-composite beam were developed to create economical and efficient components reducing the cost and shortening the length of construction work. Because the U-shaped sections are open and needs to be fixed by topping concrete securely. Therefore, it is required to maintain the U-shaped sections in a structure and to work in the safe condition through construction. It also requires accessories that resist the horizontal shear force for synthesis between the top and bottom of the U-shaped section. To reinforce these shortcomings, a shear connector has been developed with various purposes of steel plate anchors. In this study, the steel plate anchors were directly tested and the shear force was evaluated by the horizontal shear force. The experiment was divided into two types, depending on the applicable deck plates. As a result of the experiment, the continuous type specimens showed greater resistance in both strength and displacement than the ones of stud anchor specimen. In discontinuous type case, due to shear simulations and simple element analysis, the less increase the ratio of width to height and the more shear strength decreased. Thus, the shear strength equation of the stud anchor was modified to suggest the new shear strength based on the testing results.

Finite Element Analysis of Reinforced Concrete Shear Walls with a Crack under Cyclic Loading

  • Kato, S.;Ohya, M.;Shimaoka, S.;Takayama, M.
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.2
    • /
    • pp.107-116
    • /
    • 2001
  • The present paper investigates the nonlinear behavior of reinforced concrete shear walls with a crank based on a finite element analysis. The loading type is a horizontal cyclic one such as earthquake loads. Experiments of the shear walls with and without cranks, performed previously to see flow the behavior changes depending on the crank, are compared with the results obtained from the finite element analysis. The finite element analysis is based on an isoparametric degenerated shell formulation. The nonlinear constitutive equations fur concrete are modeled adopting the formulation based on a concept of Ring Typed-Lattice Model. The experiments indicate that the shear walls with a crank have low stiffness and relatively low carrying capacity compared with an ordinary plane shear wall without cranks and that they are more ductile, and the tendency is a1so confirmed based on the finite element analysis. Moreover, a good agreement between the experiments and analyses is obtained, accordingly, it is confined that the present numerical analysis scheme based on the Lattice Model is a powerful one to evaluate the behavior of reinforced concrete shear walls with cranks and without cranks.

  • PDF

System identification of high-rise buildings using shear-bending model and ARX model: Experimental investigation

  • Fujita, Kohei;Ikeda, Ayumi;Shirono, Minami;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.8 no.4
    • /
    • pp.843-857
    • /
    • 2015
  • System identification is regarded as the most basic technique for structural health monitoring to evaluate structural integrity. Although many system identification techniques extracting mode information (e.g., mode frequency and mode shape) have been proposed so far, it is also desired to identify physical parameters (e.g., stiffness and damping). As for high-rise buildings subjected to long-period ground motions, system identification for evaluating only the shear stiffness based on a shear model does not seem to be an appropriate solution to the system identification problem due to the influence of overall bending response. In this paper, a system identification algorithm using a shear-bending model developed in the previous paper is revised to identify both shear and bending stiffnesses. In this algorithm, an ARX (Auto-Regressive eXogenous) model corresponding to the transfer function for interstory accelerations is applied for identifying physical parameters. For the experimental verification of the proposed system identification framework, vibration tests for a 3-story steel mini-structure are conducted. The test structure is specifically designed to measure horizontal accelerations including both shear and bending responses. In order to obtain reliable results, system identification theories for two different inputs are investigated; (a) base input motion by a modal shaker, (b) unknown forced input on the top floor.

Reinforced concrete corbels strengthened with carbon fiber reinforced plastics

  • Lu, Wen-Yao;Yu, Hsin-Wan;Chen, Chun-Liang;Yang, Tzong-Hwan;Lin, Yu-Sin
    • Computers and Concrete
    • /
    • v.10 no.3
    • /
    • pp.259-276
    • /
    • 2012
  • A total of nine reinforced concrete corbels were tested, in this study. Six were externally strengthened with carbon fiber reinforced plastics (CFRP), in the horizontal direction. The cross-sectional area of CFRP and the shear span-to-effective depth ratios are the parameters considered, in this study. Test results indicate that the higher the cross-sectional area of CFRP, the higher is the shear strength of the corbels, and the lower the shear span-to-effective depth ratios, the higher is the shear strength of corbels. The shear strength predicted by the design provisions in section 11.8 of the ACI Code, the strut-and-tie model in Appendix A of the ACI Code, and the softened strut-and-tie (SST) model were compared with the test results. The comparisons show that both the strut-and-tie model in Appendix A of the ACI Code, and the SST model can accurately predict the shear strength of reinforced concrete corbels, strengthened with CFRP.

Experimental Study on the Hysteretic Behavior of R/C Low-Rise Shear Walls under Cyclic Loads (반복하중을 받는 철근콘크리트 저형 전단벽의 이력거동에 관한 실험적 연구 (I))

  • 최창식;이용재;윤현도;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.75-80
    • /
    • 1991
  • Results of an experimental investigation of low-rise reinforced concrete shear walls with rectangular cross section under cyclic loads are discussed and evaluated. Two half scale models of test specimens with height to length ratio of 0.75 were experimented. The dimension of all walls is 1500mm wide $\times$ 950 mm high $\times$ 100 mm thick for all specimens and the section of all boundary at both ends is 100 mm $\times$ 200mm. Main variables are : horizontal shear reinforcement ratios and reinforcement details(including crossed diagonal shear reinforcements in SWR2 specimen) In SWR2 specimen, maximum strength and consequently dissipating energy index were 1.15~1.21 and 1.48 times greater than those of SWR1 specimen, respectively.

  • PDF

Dynamic Behavior of a Breasting Dolphin with Various Dolphin Heights and Slopes (돌핀의 높이와 경사에 따른 돌핀의 거동 특성)

  • Yoon, Gyeong-Seug;Cho, Won-Chul;Jo, Chul-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.44-52
    • /
    • 2009
  • In this study, the behavior of a breasting dolphin with various dolphin heights and formations in the coastal area of Incheon was investigated. The dynamic deflection, shear stress, and moment of the pile were analyzed using the coefficient of the horizontal subgrade reaction that resulted from loading tests of different DWT (Dead Weight Tonnage). In the case of a vertical pile type dolphin, the deflection, shear stress, and moment increased as the dolphin height increased. In the case of the battered pile type dolphin, small values of shear stress and moment were shown at a low dolphin height, and the characteristics of the dynamic behavior of the dolphin showed that the deflection, shear stress, and moment increased as the pile slope of the dolphin decreased or the DWT increased.

Free Vibrations of Horizontally Curved Beams with Shear Deformation (전단변형(剪斷變形)을 고려한 수평(水平) 곡선(曲線)보의 자유진동(自由振動))

  • Lee, Byoung-Koo;Shin, Seong-Cheol;Choi, Kou-Moon;Lee, Jong-Kook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.977-981
    • /
    • 2002
  • The ordinary differential equations governing free vibrations of elastic horizontally curved beams are derived, in which the effect of shear deformation as well as the effects of vertical, rotatory and torsional inertias are included. Frequencies and mode shapes are computed numerically for parabolic curved beams with the hinged-hinged, hinged-clamped and clamped-clamped ends. Comparisons of natural frequencies between this study and ADINA are made to validate the theories and numerical methods developed herein. The lowest three natural frequency parameters are reported, with and without the effect of shear deformation, as functions of the three non-dimensional system parameters: the horizontal rise to span length ratio, the slenderness ratio and the stiffness parameter.

  • PDF

New Technique of Earthquake Resistant Performance of Reinforced Concrete Infilled Shear Wall using New Materials and Advanced Detailing (신소재 및 성능개선 디테일을 활용한 철근콘크리트 골조면내 전단벽의 내진성능 개선기술)

  • Ha, Gee-Joo;Shin, Jong-Hak;Kim, Yun-Yong;Yang, Seung-Hyeok;Hong, Kun-Ho;Kim, Jeong-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.202-205
    • /
    • 2006
  • Three reinforced concrete shear wall and infilled shear wall using retrofitting system were constructed and tested under both vertical and cyclic loadings, Experimental programs were carried out to evaluate and improve the seismic performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. under load reversals. All the specimens were modeled in one-third scale size. For specimens(RWAHC, RWXHC) designed by the improving of seismic performance using the high ductile fiber composite mortar, anchoring, and advanced detailing system for the reinforced concrete shear wall load-carrying capacities were increased $1.1{\sim}1.22$ times in comparison with the standard specimen(SRW).

  • PDF

Ultimate Load Analysis of Reinforced Concrete Shear Walls (측면하중을 받는 전단벽 구조물의 극한 거동해석)

  • Lee, Myung-Kue;Chung, Yun-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.478-481
    • /
    • 2006
  • Reinforced concrete shear wall is composed of wall, horizontal and vertical flanges. Due to the abrupt change in its geometry, it is difficult to predict the ultimate behaviour of shear wall in the action of lateral forces. For the better understanding of ultimate state, the propagation of crack and inelastic compressive zone are simulated reasonably. In this study, for the improvement of analysis result for shear wall with flanges, analyses are fulfilled with the application of some modelling methods including various material and geometrical models and numerical methods. The results from various modelling methods are compared and the advisable model is proposed.

  • PDF

Aerodynamic Load Analysis for Wind Turbine Blade in Uniform Flow and Ground Shear Flow (균일 흐름과 지상 전단 흐름에 놓인 수평축 풍력터빈 블레이드의 공력 하중 비교)

  • Kim, Jin;Ryu, Ki-Wahn
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.387-390
    • /
    • 2007
  • Recently the diameter of the 5MW wind turbine reaches 126m, and the tower height is nearly the same with the wind turbine diameter. The blade will experience periodic inflow oscillation due to blade rotation inside the ground shear flow region, that is, the inflow velocity is maximum at uppermost position and minimum at lowermost position. In this study we compare the aerodynamic data between two inflow conditions, i.e, uniform flow and normal wind profile. From the computed results all of the relative errors for oscillating amplitudes increased due to the ground shear flow effect. Especially My at hub and $F_x$, $M_y$, $M_z$ at LSS increased enormously. It turns out that the aerodynamic analysis including the ground shear flow effect must be considered for fatigue load analysis.

  • PDF