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ABSTRACT

The present paper investigates the nonlinear behavior of reinforced concrete shear walls with a crank based on a finite element
analysis. The loading type is a horizontal cyclic one such as earthquake loads. Experiments of the shear walls with and without
cranks, performed previously to see how the behavior changes depending on the crank, are compared with the results obtained
from the finite element analysis. The finite element analysis is based on an isoparametric degenerated shell formulation. The nonlinear
constitutive equations for concrete are modeled adopting the formulation based on a concept of Ring Typed-Lattice Model. The
experiments indicate that the shear walls with a crank have Jow stiffness and relatively low carrying capacity compared with an
ordinary plane shear wall without cranks and that they are more ductile, and the tendency is also confirmed based on the finite
element analysis. Moreover, a good agreement between the experiments and analyses is obtained, accordingly, it is confirmed that
the .present numerical analysis scheme based on the Lattice Model is a powerful one to evaluate the behavior of reinforced concrete

shear walls with cranks and without cranks.
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1. Introduction

A system of reinforced concrete (RC) shear walls is well
known as one of the most significant elements of archi-
tectural structures to resist against earthquakes. The struc-
tures are thin and are subjected to cyclic loading such as
earthquake loadings. A crank typed shear wall, which has a
crank within the plan and is one of the spatial shear walls like
folded walls or plates, is often used as a partitioning wall in
buildings of apartment house and hotels. Such a spatial shear
wall seems to have different structural characteristics from
those of a usual plane shear wall, because it is subjected to
the stresses of out-of-plane due to its shape as described in
the previous paper (Takayama, 1990). Despite of crank typed
walls being often adopted, there have been few investigations
on the crank typed shear walls (Takayama et al., 2000).

The present paper aims, first, at a finite element analysis
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of crank typed shear walls under cyclic loading. The shear
walls analyzed in the paper are the walls to which exper-
iments were performed previously by the fourth author
using crank typed shear walls (Takayama ez al., 2000). The
constitutive equations in the finite element are based on
Ring Typed-Lattice Model (Lattice Model) (Kato er al.,
1996.1997,1998), which was applied also in the previous
researches to analysis of RC structures subjected to cyclic
loading. Second, from the comparison between the exper-
iments and analysis, this study aims to show the extensive
applicability of the constitutive equations based on Lattice
Model, and finally, investigates in detail the structural
behavior RC shear walls with a crank subjected to cyclic
horizontal loading.

2. Numerical Procedure

In the present numerical analysis of crank typed shear
walls, an isoparametric degenerated shell element is
applied with an additional use of the nine-node Heterosis
element (Hinton et al., 1984). In the element, quadratic
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shapé functions are used to describe the element geometry.
Each node on the sides and corners has three translational
and two rotational degrees of freedom, while the central
ninth node has only two rotational degrees of freedom.
The selective integration rule (Hinton et al., 1984) is used;
the 3x3 rule for evaluating the bending stiffness com-
ponents and the 2x2 rule for the shear stiffness com-
ponents within a layer in the thickness. To represent the
strains in the element, Green Lagrange strain definitions
are used. The geometric and material nonlinearities are
taken into account. A layered approach is used to describe
the material nonlinearities through thickness. Eight layers
for concrete elements and two layers for steel reinforce-
ments are assumed.

2.1 Material Behavior of Concrete

A two dimensional concrete element is replaced by the
Lattice Model composed of a set of many straight bar ele-
ments as shown in Fig. 1 and the detail for the formulation
of the Lattice Model is abbreviated here since the detail
was explained in the previous paper (Kato et al., 1996,
1997, 1998). The Lattice Model is composed of four hub
struts (a—d) and eight ring elements (e-]). A ring element
is composed of four struts (one horizontal, one vertical and
two bracing struts), placed like a circular ring. Both ends
of each strut are pin-joined to a rigid body. The material
characteristics of these struts should be evaluated so that
the total behavior of a Lattice Element coincides with a
two-dimensional concrete element. In implementation to
the FEM, the Lattice Model is located at every integration
point and the internal stresses are evaluated as the com-
bination of the simple stress-strain relationship of all the
struts.

2.1.1 Constitutive Equations

In Fig. 1, the incremental axial strains Ag, of hub strut i

Y
T |—> Riog Element
t

Fig. 1. Ring Typed-Lattice Model.

(a—d) are expressed by Eq.(1) using the incremental strains
(Agy, Agy, Ayyy) defined with respect to local X and Y
coordinate system.

A
Ag; = SixAey+ S, yAEy+ (Sixy+ S;yx) 72,XY W

where 6, is defined in Fig. 1, for example, as 8, = —-45° for
the hub strut 4., and

AU AV A%
Ay =5 A8y= Jay Aexr=Aepx=—3Y
OAV AU
Aer=g + 5y S=cos’B,

. 2 .
S;y=sin"0, S;yy=S;yx=sinBcos 6

Incremental strains Ag; and incremental shear strains
Ay, of a ring element j(e-) shown in Fig. 1 are rep-
resented as follows when x, axis is defined as an axial
direction of a horizontal strut for ring element j, and y; axis
as an orthogonal direction as shown in Figs. 2(a) and (b).

A
Ag; = 37+ S A6+ (St Syr) =~ @)
Ay = Tyl Tyt Tryy) = et 3
% = TixAey+ TpAey+ (Tixy+ Tiyy) = n 3

where 0; for a ring element is defined in Fig. 1, for exam-
ple, as 6, = 22.5° for the ring element e.

2 52 .

T;x = —sin6@,cos 6, T;y=sinfcos 6,
2 . 2
Tixy = cos6;, Tjyx=—sin"6;

Due to the incremental strains Ag; and Ay, the ring ele-
ment deforms as shown in Figs. 2(a) and (b). Accordingly,
the incremental strains in each strut of H, V, B, B, in a ring

Detail of Ring Element

Rigid Body

t : thickness
L : characteristic length of lattice model
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(a) Elongation Ae,
Fig. 2. Deformation of Ring Element j.
element arc obtained as follows.
H
A" = A, )
Ae’ = LAy (5)
7 tan¢ ¥
B _ 2 .
AEg;" = cos” PAg;+ singeos pAy, (6)
2 _ 2 :
Ag” = cos” pAg—singcos pAY; @))]

For instance, the stress o, for i~th hub strut after incre-
ment strains 1s expressed as follows.

o; = TL‘E' Ag;+ 0y )]

where Er, 6y, and 7, are respectively the equivalent stiff-
ness, initial stress and stiffness modification coefficient for
each strut at the stage of £, before increments. The sum of
the virtual strain energy 6U, stored in the Lattice Model is
expressed using the virtual strain Ae for each strut as fol-
lows.
d
8UL = Y (;ErAg;+0y) B¢,

i=a
!
Z [(T];{EI‘HA%% + o}%) &SJH
j=e
+( n}'ErB VAE}G + 0'}6) 5&‘;/

B BV , B B B
+(1'Er” " Agg + 00) O8;

+(n) B Adgg + o) 8 ©)
On the other hand, the virtual strain energy 6U stored in
a concrete element is expressed as follows.

6U = Sexcx'F SSYdy‘*‘ SYXYTXY (10)

where (Gy, Oy, Tyy) and (&, €y, ¥xy) are the stresses and
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(b) Shear Ay,

strains with respect to X and ¥ coordinate system. Equating
the virtual strain energy 8U stored in the concrete element
to the total one U, stored in the struts, we can obtain the
incremental constitutive equations as follows.

Oy Dy, D), D3| Agy Oxp
Oy ¢ = Dy Doy §4Ey 44 Oy (11)
Txy sym. Dy || A%y| | Txvo

where D, are the stiffness matrix of element and oy, oy,
and 7y, are the initial stresses at the stage of &y, &y, and
Yxy = Yyx - (The details of the components of the matrix are
described in reference (Kato et ¢l., 1998).)

2.1.2 Eguivalent Initial Stiffness for Each Strut Com-

posing the Lattice Model

By assuming that the elastic constitutive equations are
identical to the constitutive equations under plane stress
condition of an isotropic elastic body, we can obtain here
the equivalent initial stiffness for each strut composing the
Lattice Model. In such a case of 11 = 1, the equivalent ini-
tal stiffness of hub struts, horizontal struts of ring element,
and vertical and two bracing struts of ring element, is rep-
resented by Er, /" and Er®" respectively.

= E

Er= 6(1_V) (12)

. _25in2¢c052¢J3(1_3v)}_

T e 120 [T (13)

—Euﬁzl_ tanqu J3(1—3v)}5_ "
1+2sin*pl 2(1+V)

where E is the modulus of elasticity, and v is a Poisson’s
ratio. In this paper, f= 60° is assumed referring to the pre-
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vious calculation (Kato et al., 1996, 1997, 1998),

2.1.3 Stress-Strain Relations of Constitutive Struts

The stress-strain relations of hub struts, horizontal and
bracing struts of the ring element are shown in Fig. 3(a),
while the one for the vertical struts is shown in Fig. 3(b).
The detail on how the hysteresis curves are defined was
given in the references (Kato er al., 1996, 1997, 1998).
Briefly explaining, the values (o, 0, 2,5 &, & etc.) in
Fig. 3(a) of the hub struts, horizontal and bracing struts are
calculated based on the material properties (f.,f,.€,) of
standard cylinder test. These values are determined mainty
considering deformations under equibiaxial stresses. On

[+
jl
% TN
] -
— e w H g, BV
Efu, _ A o Er, ,E;;[ :
T
i ng- [+2 Elcr Etul = ﬂstcr
i c
U
P T e
(a)

the other hand, the compressive and tensile strength o)
for the vertical strut of the ring element shown in Fig. 3(b)
can be estimated mainly based on shear deformation,
because the vertical strut can not resist equibiaxial stress
conditions. Since the vertical strut of ring element is
assumed mainly to resist against shear stress, the stress-
strain relation for the vertical strut in the ring element is
defined to be anti-symmetric. In Fig. 3(a), R, and ¢, are
assumed to be 0.2 and 4 ¢, , respectively based on Darwin
Model (Darwin er al., 1976). The equation proposed by
Saenz (Saenz, 1976) is adopted from the neutral O until
the compressive strength P. After the compressive strength

'

cuf

“Friy

! __Re'c'-t E €

(b)

Fig. 3. Stress-Strain Relations of Constitutive Struts in the Lattice Mode. (a) Hub Strut, Horizontal and Bracing Strut of Ring Element, (b)

Vertical Strut of Ring Element.
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Fig. 4. Stress-Strain Relations under Cyclic Loading. (a) Hub Strut, Horizontal and Bracing Strut of Ring Flement, (b) Vertical Strut of

Ring Element.
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P, the straight degradation line, which connects P with U,
is adopted. Generally, concrete elements may not resist
against the tensile stress, after cracks arise in the concrete.
However, the cracked concrete pretends to resist against
tensile stress caused by a dowel action and an interlocking
phenomena. In the present study, the tension stiffening fac-
tors 3 shown in Fig. 3(a) is assumed to be 2.0 from para-
metric studies (Kato er al., 1996, 1997, 1998).

2.1.4 Cyclic Behavior of Struts Reflecting the Reduction

Factor of Compressive Strength

‘The stress-strain relations of concrete elements if com-
pressed excessively may degrade under cyclic loadings
and the relations behave as shown in Figs. 4(a) and (b). In
the present Lattice Model, the Modified Compression-
Filed (Vecchio et al., 1986) is adopted. The strain of plas-
ticity &, at the point Z is calculated by the equation pro-
posed by Buyukozturk (Buyukozturk er al., 1984). We
adopt a circular curve for unloading. The straight line,
which connects the point R with the point E, is adopted as
a reloading curve. Therefore, the compressive strength of
Ao, pre-cracked concrete is reduced depending on the
maximum tensile strain g, ever experienced.

max

£

A=1-A max— Erer (15)

€ Crer
where ¢,, = &, + K(£,.,— &), K=2.7..

The reduction rate of the strength in cracked concrete
may be determined by the roughness of the crack surface
but limited only to the neighborhood of cracks. The values
of the reduction factor are assumed to have a minimum
limit 1.0-A shown in Fig. 5 (Jzumo et al., 1989), The
reduction factors A of the struts assumed in the Lattice
Model are shown in Table 1 referring to the previous cal-
culations (Kato et al., 1997, 1998). When the cracked con-
crete element is subjected to a compression strain, the
cracks close again. For expressing such a stress degra-
dation, a switchover point as depicted as in ¢; Fig. 4(a) is

+l

1.0

+ + >
Ecp Str_'r £ rd Emﬂx

Fig. 5. Reduction Factor of Compressive Strength (Izumo et al.,
1989).
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Table 1. Reduction Factor A (Kato er al., 1997,1998) and Switchover
Factor ¢ (Naganuma et al., 2000)

Strut Name Reduction Switchover
Factor A Factor ¢
Hub Strat Al 0.4 glmb =0.1
Vertical Strut of Ring A =04 gV =0.0
Element
Horizontal Strut of H H_
Ring Element A7=00 ¢'=05
Bracing Struts of Ring ABI’ AP 08 gBla ng - 20

Element

assumed based on the study by Naganuma (Naganuma ez
al., 2000). These switchover points and the recent max-
imum strength being renewed step by step are connected
by polygonal line. The value of the stress ¢; for the
switchover point J is assumed as ¢ time the tensile
strength based on Naganuma Model shown in Table 1.
The compressive strength and tensile strength for vertical
struts of the ring element in Fig. 4(b) are reduced by the
maximum tensile strain &,,, and the minimum com-
pressive strain £,,;, ever experienced, respectively.

Eni Eax
A= 1+ A2 f = 1-AE (16)
T

!

2.2 Stress-Strain Relations of Steel Reinforcements

The reinforcing steels placed orthogonally within walls
are approximated by two steel sheets, which resist uni-axi-
ally with a bi-linear type stress-strain relation as shown in
Fig. 6. The steel elements are assumed to effectively work
equally against both tension and compression.

2.3 Definition of Concrete Cracks

The Lattice Model represents a stress condition using
combination of many straight struts, However, the def-
inition of cracks as a continuum cannot be determined

E, =E, /100

™y

Fig. 6. Stres-Strain Relations for Reinforcing Steel.
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directly by using the cracks of those struts. Accordingly,
the generation of cracks in concrete is defined in this study
as a condition under which the principal tensile strain cal-

Control Point
\ 100 Beam s [inmom ]
ot g / e
=) ) 7 1
25 7 'y
Wall a
P4
Colunn &
7y
Base Beam A
Ny ¥
300J 300 I 500 300
T 1600 )
(a) Elevation
Y
. +8 ] t
s f———{ |55
S ¥

(b) Plan for CE-0 (without crank)
500 500

F Y

»

le
[

(d) Plan for CE-1/4 (with crank)
Fig. 7. Shapes and Dimensions of RC Shear Walls.

culated by the strains (&, & %) at an integration point
exceeds the tensile limit strain. The tensile limit strain is
assumed as follows.

€7 = D an
where 4_,,.; is assumed to be 2.0 in the present analysis. f;
and E, are respectively the tensile strength for cylinder test
and the Young’s Modulus.

2.4 Incremental Scheme

To investigate the RC shear wall responses, the dis-
placement incremental scheme is used for analyzing the
nonlinear behavior and for avoiding the numerical insta-
bility caused by the sudden changes of the stress states due
to concrete cracks.

3. Experiment

Three specimens (Takayama er al., 2000), designated
CE-0, CE-1/2 and CE-1/4, are shown in Fig. 7. The crank
position is summarized for each wall in Table 2, which
also gives the material properties for each of the spec-
imens. All three specimens were of 1,000 mm span, 535
mm height and 30 mm thickness, and reinforced by a com-
mon RC frame with 100x130 mm section. The thickness
of the walls was designed 30 mm, however, the real thick-
ness of each wall was actually a little thicker than the
designed value as shown in Table 2. Fig. 8§ shows the
arrangement of reinforcement steels of the typical wall
(CE-0). Single-layer reinforcement steels (diameter=2.5
mm) were arranged orthogonally in the wall. The cyclic
horizontal loads were applied statically to the specimens.
The peak of each cycle was controlled by displacement at

Table 2. Material Properties of the Models, Concrete and Reinforcements

CE-O CE-172 CE-1/4
Position of crank None Center Quarter
Model Thickness of Wall [mm] 31.44 31.10 31.53
Ratio of Reinforcements [%] 0.409 0.409 0.409
Compressive Strength  [N/mm?] 39.1 33.1 36.8
Concrete Tensile Strength [N/mm?] 337 2.89 342
Young’s Modulus [kN/mm?] 24.4 23.6 24.8
Poisson’s Ratio 0.166 0.179 0.181
62.5 D10
Young’s Modulus [kN/mm?] 216 201
Reinforcement
Yield Strength [N/mm?] 639 393
Ultimate Strength [N/mm?2] 675 508
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6 2.5@35 $ 2.5@35 4-D10 the top of the wall. The procedure of cyclic loadings is
—_, shown in Fig. 9. In 14th cyclic, the loads were applied
O AFTRIATY; I increasingly until the failure of the specimen.
IH 4-DI10

M_ng i s 25035 4. Numerical Analysis
E / The numerical models, CE-0, CE-1/2 and CE-1/4, are
= divided with shell elements, respectively as shown in Figs.
Z 10(a), (b) and (c). In the CE-0 model, the wall is divided
D10@150 / U 2.5@40 6-D19 into 6x10 elements. In the CE-1/2 and CE~1/4 models, the
walls are divided into 6 elements in the vertical direction
Fig. 8. Reinforcement Arrangement (CE-0). and into 12 and 13 elements considering cranks in the hor-

Rx10? 14

R(x 107
0.25
0.50

1.00

2.00

(c) CE-1/4
Fig. 10. Finite Element Mesh.
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izontal direction, respectively. Then, each columm is
divided into 6 elements in the vertical direction. The beam
at the top is divided into 12 elements for CE-0 and CE-1/2
models, and 13 elements for CE-1/4 model in the hor-
izontal direction. Also, the column and beam are divided
in the Y (lateral) direction into 2 elements for CE-0 model
and 4 elements for CE-1/2 and CE-1/4 models as shown in
Fig. 10.

Within each shell element for the walls is divided into 8
concrete layers and 2 steel layers, and every element for
beams and columns is divided into 8 concrete layers and 4
steel layers. Int the numerical model, the designed shell
thickness (=30 mm) is adopted for walls. The reinforcing
ratios of the wall in both vertical and horizontal direction
are 0.409% in the all specimens. The reinforcements in the
wall are arranged at center through thickness. The con-
centrated loads at each node in ‘the loading beam are
applied. In the numerical analysis, the displacement con-
trol is adopted while all the horizontal displacements of

QkN) R=40x107 R=1/100
250
200 e .
150
lr’ 1
100 Jrme
50 S
0 I
1) QY Sy < o/t . Lo oo
=100 —— Analysis
-150 —+— Experiment
-200 T
-250 ' ‘
60 40 -20 00 20 40 60 80 100
& (xrum)
{a)
Q(N} R=40x10" R=1/100
200 - —
150 - --- I U
100 } - -we - - - - L LA L |
50 F-- - - - -ENEEE D e S
0 ———— —_
-50 - :
—— Analysis
-100 + "T 777 ) -« - Experiment]”
-150 B —_— ——
_200 I3 ]
60 40 -20 00 20 40 60 80 100
& (ammn)
©

the loading beam are assumed same in the X direction.

3. Comparison Between Numerical and Experi-
mental Results

Figs. 11(a), (b) and (¢) show the load Q(kN)- dis-
placement &(mm) relations for CE-0, CE-1/2, CE-1/4,
respectively. The solid lines denote the numerical
responses, and the solid lines with filled diamond marks
denote the experimental ones in the each specimen. Fig.
11(d) shows the ratio of the ultimate shear strength. The
ulttmate load Q,, and the load at R=1/100 are listed in
Table 3 and the ultimate shear strength is non-dimen-sion-
alized by the following Eq. (18).

fC AWfC
where 0, A, and f, respectively the ultimate load, the
cross section of the horizontal wall section and the com-

(18)

QN)
200

R=4.0x107 R=1/100

____________________

o Analysis

' | —e-~ Experiment

BRatie

-200 .
-60 -40 20 00 20 40 60 80 100
& ()
(b)
x= ‘}i
0.20 ¢
H
0.15 R ————s-—- A
! + Experiment(+)
010 f---- -n-- -| |® Analysis()
A Experiment(-)
Analysis(-
005 | oo ® Analysis(-)
0.00
CE-) CE-1/2 CE-1/4
(d)

Fig, 11. (a) Load-Displacement Relations for CE-0, (b) Load-Displacement Relations for CE-1/2, (c) Load-Displacement Relations for

CE-1/4, (d) Ratios of Shear Strength,
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Table 3. List of Loading

Computational Structural Engineering 2 (2001) 107~116 115

Horizontal Loading Q (kN) CEO CE-12 CEIA

+) =) +) =) ) =)
Ultimate Load Q uit [kN]  Experiment 201.9 192.9 158.3 161.4 150.5 1743
Analysis 203.4 199.8 150.5 144.6 1572 156.2

Ex/An 0.99 0.97 1.05 1.12 0.96 1.12
Load o.f R=1/100 |kN] Experiment 1839 163.0 137.7 138.3 130.4 130.7
‘ Analysis 196.9 1975 145.5 140.7 151.7 148.8

Ex/An 0.93 0.83 0.95 0.98 0.86 0.88

Compressive Strength, fc’ [N/mm?) 39.1 33.1 36.8

Ve Qui Experiment 0.172 0.164 0.149 0.152 0.127 0.148
Cf AL Analysis 0.173 0.170 0.142 0.136 0.133 0.132

Note: A, [mm?] is the cross section of the wall part.

(a)
(a) Analysis (Crack and Deformed Pattern)

Fig. 12. Crack and Deformed Pattern in the Wall Part for CE-~1/2 at R=4.0x10-3 (Side A).

pressive strength as of cylinder test.

The ratio of experimental to numerical results of the ulti-
mate load Q,, falls from 0.96 to 1.12, and the ratio of those
for R=1/100 (see Fig. 9; 13 cycles) ranges from 0.83 to
0.98 in Table 3. In Figs. 11(a), (b) and (c) and Table 3, fine
agreements are obtained between the numerical and exper-
imental results with respect to both of the ultimate load
and areas of hysteresis loops while the hysteresis loops in
the numerical responses are a little smaller than the exper-
imental ones. And the ductile deformation and low car-
rying capacity for crank type shear wall are found, since
relatively larger sway is produced for the crank typed
walls. On the other hand, Fig.11(d) shows that the ulti-
mate shear strength of the shear walls with a crank tends to
decrease due to the presence of the crank at most by the
order of 25% than those without cranks.

Figs. 12(a) and (b) show the crack pattern found within
the wall of the model CE-1/2 for R=4.0x10-2 through both
the numerical and experimental results. The deformed pat-

L4 T 1.
Wi /<- / b
A1 T 1 N
/] L, )r ¢
] N ]
y T =
VTN 7 f
/y "Y
i kY
6} 7]
()]

(b) Experiment (Crack Pattern)

Table 4. The Deformation of Each Point for CE-1/2 at R=4.0x10"?

[mm]
X direction Y direction Z direction
No- An Ex An Ex An
1 -2.03 213 -0.11 0.00 0.12 0.10
3 -2.13 -2.13 -0.90 0.00 0.67 0.63
6 028 048 —0.10 -0.13 0.98 0.54
7 -1.13  -1.50 0.64 0.29 -0.25 0.19

tern for R=4.0x10-* is also shown in Fig. 12(a). Com-
parison between the numerical and experimental results
with respect to the deformation for CE-1/2 in each position
as shown in Figs. 12(a) and (b) are listed in Table 4. In
Figs. 12(a), (b) and Table 4, the deformations are globally
in fine agreements between the numerical and experi-
mental responses in the X and Y directions. And an almost
same crack pattern with about 45-degrees angle is gen-
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erated, however, a difference of deformation near the
crank is observed between the numerical and experi-
mental responses. Judging globally, not only the ultimate
load but also the total behavior of deformation of the shear
walls under cyclic loading may be simulated based on the
Lat-tice Model.

6. Conclusions

In this paper, the cyclic behavior of the shear walls with
and without crank is examined both numerically and
experimentally. The conclusions are drawn as follows.

1. The validity and applicability of the constitutive equa-
tions based on the Lattice Model A for RC shear walls
with and without crank subjected to cyclic loading is
confirmed.

2. In the present mumerical analysis, the ductile defor-
mation is found with a little smaller shear strength for
crank. type shear walls as depicted in the experiment.

3. Similarly to other numerical results of walls, it is con-
firmed that the reduction factors for the compressive
strength is necessary for simulating cyclic behaviors.
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