• Title/Summary/Keyword: Horizontal detection

Search Result 304, Processing Time 0.025 seconds

Precise Geometric Registration of Aerial Imagery and LIDAR Data

  • Choi, Kyoung-Ah;Hong, Ju-Seok;Lee, Im-Pyeong
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.506-516
    • /
    • 2011
  • In this paper, we develop a registration method to eliminate the geometric inconsistency between the stereo-images and light detection and ranging (LIDAR) data obtained by an airborne multisensor system. This method consists of three steps: registration primitive extraction, correspondence establishment, and exterior orientation parameter (EOP) adjustment. As the primitives, we employ object points and linked edges from the stereo-images and planar patches and intersection edges from the LIDAR data. After extracting these primitives, we establish the correspondence between them, being classified into vertical and horizontal groups. These corresponding pairs are simultaneously incorporated as stochastic constraints into aerial triangulation based on the bundle block adjustment. Finally, the EOPs of the images are adjusted to minimize the inconsistency. The results from the application of our method to real data demonstrate that the inconsistency between both data sets is significantly reduced from the range of 0.5 m to 2 m to less than 0.05 m. Hence, the results show that the proposed method is useful for the data fusion of aerial images and LIDAR data.

The Versatility of Cervical Vertebral Segmentation in Detection of Positional Changes in Patient with Long Standing Congenital Torticollis

  • Hussein, Mohammed Ahmed;Kim, Yong Oock
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.1
    • /
    • pp.28-32
    • /
    • 2016
  • Background Congenital muscular torticollis (CMT) is a benign condition. With early diagnosis and appropriate management, it can be cured completely, leaving no residual deformity. However, long-standing, untreated CMT can lead to permanent craniofacial deformities and asymmetry.Methods Nineteen patients presented to the author with congenital muscular torticollis. Three dimensional computed tomography (3-D CT) scans was obtained upon patient’s admission. Adjustment of skull’s position to Frankfort horizontal plan was done. Cervical vertebral segmentation was done which allowed a 3D module to be separately created for each vertebra to detect any anatomical or positional changes.Results The segmented vertebrae showed an apparent anatomical changes, which were most noticeable at the level of the atlas and axis vertebrae. These changes decreased gradually till reaching the seventh cervical vertebra, which appeared to be normal in all patients. The changes in the atlas vertebra were mostly due to its intimate relation with the skull base, while the changes of the axis were the most significantConclusion Cervical vertebral segmentation is a reliable tool for isolation and studying cervical vertebral pathological changes of each vertebra separately. The accuracy of the procedures in addition to the availability of many software that can be used for segmentation will allow many surgeons to use segmentation of the vertebrae for diagnosis and even for preoperative simulation planning.

Passive Ranging Based on Planar Homography in a Monocular Vision System

  • Wu, Xin-mei;Guan, Fang-li;Xu, Ai-jun
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.155-170
    • /
    • 2020
  • Passive ranging is a critical part of machine vision measurement. Most of passive ranging methods based on machine vision use binocular technology which need strict hardware conditions and lack of universality. To measure the distance of an object placed on horizontal plane, we present a passive ranging method based on monocular vision system by smartphone. Experimental results show that given the same abscissas, the ordinatesis of the image points linearly related to their actual imaging angles. According to this principle, we first establish a depth extraction model by assuming a linear function and substituting the actual imaging angles and ordinates of the special conjugate points into the linear function. The vertical distance of the target object to the optical axis is then calculated according to imaging principle of camera, and the passive ranging can be derived by depth and vertical distance to the optical axis of target object. Experimental results show that ranging by this method has a higher accuracy compare with others based on binocular vision system. The mean relative error of the depth measurement is 0.937% when the distance is within 3 m. When it is 3-10 m, the mean relative error is 1.71%. Compared with other methods based on monocular vision system, the method does not need to calibrate before ranging and avoids the error caused by data fitting.

Stereo 3 mm Millimeter Wave Imaging for Distance Estimation to Concealed Objects (스테레오 3mm 밀리미터파 영상을 이용한 은닉물체의 거리추정에 관한 연구)

  • Yeom, Seokwon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.18 no.1
    • /
    • pp.21-24
    • /
    • 2017
  • Passive millimeter wave (MMW) imaging penetrates clothing to detect concealed objects. The distances extraction to the concealed objects is critical for the security and defense. In this paper, we address a passive stereo 3 mm MMW imaging system to extract the longitudinal distance to the concealed object. The concealed object area is segmented and extracted by the k-means clustering algorithm with splitting initialization. The distance to the concealed object is estimated by the corresponding centers of the segmented objects. In the experimental two pairs (each pair for horizontal and vertical polarization) of stereo MMW images are obtained to estimate distances to concealed objects.

  • PDF

Study of Deep Reinforcement Learning-Based Agents for Controlled Flight into Terrain (CFIT) Autonomous Avoidance (CFIT 자율 회피를 위한 심층강화학습 기반 에이전트 연구)

  • Lee, Yong Won;Yoo, Jae Leame
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.2
    • /
    • pp.34-43
    • /
    • 2022
  • In Efforts to prevent CFIT accidents so far, have been emphasizing various education measures to minimize the occurrence of human errors, as well as enforcement measures. However, current engineering measures remain in a system (TAWS) that gives warnings before colliding with ground or obstacles, and even actual automatic avoidance maneuvers are not implemented, which has limitations that cannot prevent accidents caused by human error. Currently, various attempts are being made to apply machine learning-based artificial intelligence agent technologies to the aviation safety field. In this paper, we propose a deep reinforcement learning-based artificial intelligence agent that can recognize CFIT situations and control aircraft to avoid them in the simulation environment. It also describes the composition of the learning environment, process, and results, and finally the experimental results using the learned agent. In the future, if the results of this study are expanded to learn the horizontal and vertical terrain radar detection information and camera image information of radar in addition to the terrain database, it is expected that it will become an agent capable of performing more robust CFIT autonomous avoidance.

Resistome Study in Aquatic Environments

  • Hanseob Shin;Yongjin Kim;Seunggyun Han;Hor-Gil Hur
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.277-287
    • /
    • 2023
  • Since the first discovery of antibiotics, introduction of new antibiotics has been coupled with the occurrence of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Rapid dissemination of ARB and ARGs in the aquatic environments has become a global concern. ARB and ARGs have been already disseminated in the aquatic environments via various routes. Main hosts of most of ARGs were found to belong to Gammaproteobacteria class, including clinically important potential pathogens. Transmission of ARGs also occurs by horizontal gene transfer (HGT) mechanisms between bacterial strains in the aquatic environments, resulting in ubiquity of ARGs. Thus, a few of ARGs and MGEs (e.g., strA, sul1, int1) have been suggested as indicators for global comparability of contamination level in the aquatic environments. With ARB and ARGs contamination, the occurrence of critical pathogens has been globally issued due to their widespread in the aquatic environments. Thus, active surveillance systems have been launched worldwide. In this review, we described advancement of methodologies for ARGs detection, and occurrence of ARB and ARGs and their dissemination in the aquatic environments. Even though numerous studies have been conducted for ARB and ARGs, there is still no clear strategy to tackle antibiotic resistance (AR) in the aquatic environments. At least, for consistent surveillance, a strict framework should be established for further research in the aquatic environments.

Detection of Opposite Magnetic Polarity in a Light Bridge : Its Emergence and Cancellation in association with LB Fan-shaped Jets

  • Lim, Eun-Kyung;Yang, Heesu;Yurchyshyn, Vasyl;Chae, Jongchul;Song, Donguk;Madjarska1, Maria S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.45.1-45.1
    • /
    • 2020
  • Light bridges (LBs) are relatively bright structures that divide sunspot umbrae into two or more parts. Chromospheric LBs are known to be associated with various activities including fan-shaped jet-like ejections and brightenings. Although magnetic reconnection is frequently suggested to be responsible for such activities, not many studies presented firm evidence to support the scenario. We carry out magnetic field measurements and imaging spectroscopy of a LB where fan-shaped jet-like ejections occur with co-spatial brightenings at their footpoints. We study their fine photospheric structures and magnetic field changes using TiO images, Near-InfraRed Imaging Spectropolarimeter data, and Hα data taken by the 1.6 m Goode Solar Telescope. As a result, we detect magnetic flux emergence in the LB that is of opposite polarity to that of the sunspot. The new flux cancels with the pre-existing flux at a rate of 5.6×1018 Mx hr-1. Both recurrent jet-like ejections and their footpoint brightenings are initiated at the vicinity of the magnetic cancellation, and show apparent horizontal extension along the LB at a projected speed of 4.3 km s-1 to form the fan-shaped appearance. Based on these observations, we suggest that the fan-shaped ejections may have resulted due to slipping reconnection between the new flux emerging in the LB and the ambient sunspot field.

  • PDF

Prediction of Fire Spread and Real-Time Evacuation System according to Spatial Characteristics (공간적 특성에 따른 화재 확산 예측 및 실시간 대피 시스템 연구)

  • Nam-Gi An;Geon-Hui Lee;Min-jeong Kim;Kyu-Ho Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.617-623
    • /
    • 2023
  • Among the fire incidents in Korea over the past decade, building fires are the most common, and property and human casualties are the most common. However, the existing fire fighting system does not only inform the location of emergency exits and guide safe routes to help casualties evacuate smoothly. A system was proposed to help successful evacuation by distinguishing vertical and horizontal characteristics using spatial characteristics. In this study, an effective evacuation system was proposed by predicting fires using temperature detection sensors and smoke sensor values, and calculating the optimal evacuation path through the Dijkstra algorithm.

A Study on Dynamic Safety Navigation Envelopes Considering a Ship's Position Uncertainty

  • Pyo-Woong Son;Youngki Kim;Tae Hyun Fang;Kiyeol Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.289-294
    • /
    • 2023
  • As technologies such as cameras, Laser Imaging, Detection, and Ranging (LiDAR), and Global Navigation Satellite Systems (GNSS) become more sophisticated and common, their use in autonomous driving technologies is being explored in various fields. In the maritime area, technologies related to collision avoidance between ships are being developed to evaluate and avoid the risk of collision between ships by setting various scenarios. However, the position of each vessel used in the process of developing collision avoidance technology between vessels uses data obtained through GNSS, and may include a position error of 10 m or more depending on the situation. In this paper, a study on the dynamic safety navigation range including the positional inaccuracy of the ship is conducted. By combining the concept of the protection level obtained using GNSS raw data with a conventional safe navigation range, a safer navigation range can be calculated for dynamic navigation. The calculated range is verified using data obtained while sailing in an actual sea environment.