• Title/Summary/Keyword: Horizontal detection

Search Result 304, Processing Time 0.024 seconds

The horizontal line detection method using Haar-like features and linear regression in infrared images

  • Park, Byoung Sun;Kim, Jae Hyup
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.29-36
    • /
    • 2015
  • In this paper, we propose the horizontal line detection using the Haar-like features and linear regression in infrared images. In the marine environment horizon image is very useful information on a variety of systems. In the proposed method Haar-like features it was noted that the standard deviation be calculated in real time on a static area. Based on the pixel position, calculating the standard deviation of the around area in real time and, if the reaction is to filter out the largest pixel can get the energy map of the area containing the straight horizontal line. In order to select a horizontal line of pixels from the energy map, we applied the linear regression, calculating a linear fit to the transverse horizontal line across the image to select the candidate optimal horizontal. The proposed method was carried out in a horizontal line detecting real infrared image experiment for day and night, it was confirmed the excellent detection results than the legacy methods.

A Comparative Analysis of Edge Detection Methods in Magnetic Data

  • Jeon, Taehwan;Rim, Hyoungrea;Park, Yeong-Sue
    • Journal of the Korean earth science society
    • /
    • v.36 no.5
    • /
    • pp.437-446
    • /
    • 2015
  • Many edge detection methods, based on horizontal and vertical derivatives, have been introduced to provide us with intuitive information about the horizontal distribution of a subsurface anomalous body. Understanding the characteristics of each edge detection method is important for selecting an optimized method. In order to compare the characteristics of the individual methods, this study applied each method to synthetic magnetic data created using homogeneous prisms with different sizes, the numbers of bodies, and spacings between them. Seven edge detection methods were comprehensively and quantitatively analyzed: the total horizontal derivative (HD), the vertical derivative (VD), the 3D analytic signal (AS), the title derivative (TD), the theta map (TM), the horizontal derivative of tilt angle (HTD), and the normalized total horizontal derivative (NHD). HD and VD showed average good performance for a single-body model, but failed to detect multiple bodies. AS traced the edge for a single-body model comparatively well, but it was unable to detect an angulated corner and multiple bodies at the same time. TD and TM performed well in delineating the edges of shallower and larger bodies, but they showed relatively poor performance for deeper and smaller bodies. In contrast, they had a significant advantage in detecting the edges of multiple bodies. HTD showed poor performance in tracing close bodies since it was sensitive to an interference effect. NHD showed great performance under an appropriate window.

Oriented object detection in satellite images using convolutional neural network based on ResNeXt

  • Asep Haryono;Grafika Jati;Wisnu Jatmiko
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.307-322
    • /
    • 2024
  • Most object detection methods use a horizontal bounding box that causes problems between adjacent objects with arbitrary directions, resulting in misaligned detection. Hence, the horizontal anchor should be replaced by a rotating anchor to determine oriented bounding boxes. A two-stage process of delineating a horizontal bounding box and then converting it into an oriented bounding box is inefficient. To improve detection, a box-boundary-aware vector can be estimated based on a convolutional neural network. Specifically, we propose a ResNeXt101 encoder to overcome the weaknesses of the conventional ResNet, which is less effective as the network depth and complexity increase. Owing to the cardinality of using a homogeneous design and multi-branch architecture with few hyperparameters, ResNeXt captures better information than ResNet. Experimental results demonstrate more accurate and faster oriented object detection of our proposal compared with a baseline, achieving a mean average precision of 89.41% and inference rate of 23.67 fps.

On-Road Succeeding Vehicle Detection using Characteristic Visual Features (시각적 특징들을 이용한 도로 상의 후방 추종 차량 인식)

  • Adhikari, Shyam Prasad;Cho, Hi-Tek;Yoo, Hyeon-Joong;Yang, Chang-Ju;Kim, Hyong-Suk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.636-644
    • /
    • 2010
  • A method for the detection of on-road succeeding vehicles using visual characteristic features like horizontal edges, shadow, symmetry and intensity is proposed. The proposed method uses the prominent horizontal edges along with the shadow under the vehicle to generate an initial estimate of the vehicle-road surface contact. Fast symmetry detection, utilizing the edge pixels, is then performed to detect the presence of vertically symmetric object, possibly vehicle, in the region above the initially estimated vehicle-road surface contact. A window defined by the horizontal and the vertical line obtained from above along with local perspective information provides a narrow region for the final search of the vehicle. A bounding box around the vehicle is extracted from the horizontal edges, symmetry histogram and a proposed squared difference of intensity measure. Experiments have been performed on natural traffic scenes obtained from a camera mounted on the side view mirror of a host vehicle demonstrate good and reliable performance of the proposed method.

A Facial Region Detection using the Skin Color and Edge Information at YCbCr (YCbCr 색공간에서 피부색과 윤곽선 정보를 이용한 얼굴 영역 검출)

  • 권혁봉;권동진;장언동;윤영복;안재형
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.1
    • /
    • pp.27-34
    • /
    • 2004
  • This thesis proposes a face detection algorithm using the color and edge informations in color image. The proposed algorithm segments skin color by Cb and Cr in YCbCr coordinates. Then face candidate regions are made after morphological filtering and labeling. For the regions, the Sobel vortical operation and horizontal projection are performed in the Y luminance components. The peak value indicates the eye location. Similarly, the chin location is detected by the Sobel horizontal operation and horizontal projection. The computer simulation shows that the proposed method gains similar detection rates of previous method and prevent facial region from including neck by detection of chin.

  • PDF

Lane & Obstacle Detection using Edge and Horizontal Projection (에지와 수평 투영을 이용한 차선 및 장애물 검출)

  • Chang, Un-Dong;Song, Young-Jun;Kim, Young-Gil;Kim, Dong-Woo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.453-456
    • /
    • 2004
  • In this paper, we propose the method of lane and obstacle detection using edge and horizontal projection. we convert color image to gray image and detect edge. After lane detection using edge, we detect the obstacle using horizontal projection in the region of lane. The simulation shows that our method is able to detect lane and obstacle in the place of monotonous light.

  • PDF

A GPS Repeat-Back Jamming Signal Detection Scheme Based on the Sample Variance of Horizontal Location of a Receiver (수신기 수평적 위치의 표본 분산에 따른 GPS 재방송 재밍 신호 검출 기법)

  • Choe, Young Eun;Kim, Sun Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1759-1761
    • /
    • 2016
  • In this letter, we propose a GPS repeat-back jamming signal detection scheme based on the sample variance of the horizontal location of a receiver and evaluate the detection performance using real positioning data of the GPS receiver.

Head Detection based on Foreground Pixel Histogram Analysis (전경픽셀 히스토그램 분석 기반의 머리영역 검출 기법)

  • Choi, Yoo-Joo;Son, Hyang-Kyoung;Park, Jung-Min;Moon, Nam-Mee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.11
    • /
    • pp.179-186
    • /
    • 2009
  • In this paper, we propose a head detection method based on vertical and horizontal pixel histogram analysis in order to overcome drawbacks of the previous head detection approach using Haar-like feature-based face detection. In the proposed method, we create the vertical and horizontal foreground pixel histogram images from the background subtraction image, which represent the number of foreground pixels in the same vertical or horizontal position. Then we extract feature points of a head region by applying Harris corner detection method to the foreground pixel histogram images and by analyzing corner points. The proposal method shows robust head detection results even in the face image covering forelock by hairs or the back view image in which the previous approaches cannot detect the head regions.

Vision Sensing for the Ego-Lane Detection of a Vehicle (자동차의 자기 주행차선 검출을 위한 시각 센싱)

  • Kim, Dong-Uk;Do, Yongtae
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.137-141
    • /
    • 2018
  • Detecting the ego-lane of a vehicle (the lane on which the vehicle is currently running) is one of the basic techniques for a smart car. Vision sensing is a widely-used method for the ego-lane detection. Existing studies usually find road lane lines by detecting edge pixels in the image from a vehicle camera, and then connecting the edge pixels using Hough Transform. However, this approach takes rather long processing time, and too many straight lines are often detected resulting in false detections in various road conditions. In this paper, we find the lane lines by scanning only a limited number of horizontal lines within a small image region of interest. The horizontal image line scan replaces the edge detection process of existing methods. Automatic thresholding and spatiotemporal filtering procedures are also proposed in order to make our method reliable. In the experiments using real road images of different conditions, the proposed method resulted in high success rate.

Detection of Preceding Vehicles Based on a Multistage Combination of Edge Features and Horizontal Symmetry (에지특징의 단계적 조합과 수평대칭성에 기반한 선행차량검출)

  • Song, Gwang-Yul;Lee, Joon-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.679-688
    • /
    • 2008
  • This paper presents an algorithm capable of detecting leading vehicles using a forward-looking camera. In fact, the accurate measurements of the contact locations of vehicles with road surface are prerequisites for the intelligent vehicle technologies based on a monocular vision. Relying on multistage processing of relevant edge features to the hypothesis generation of a vehicle, the proposed algorithm creates candidate positions being the left and right boundaries of vehicles, and searches for pairs to be vehicle boundaries from the potential positions by evaluating horizontal symmetry. The proposed algorithm is proven to be successful by experiments performed on images acquired by a moving vehicle.