• Title/Summary/Keyword: Horizontal Well

Search Result 1,403, Processing Time 0.035 seconds

A STUDY ON THE ANALYSIS ZONE OF MOUNTAIN TWIN WATER TUNNELS (산악지 쌍글 수로터널 해석에 대한 고찰)

  • Baek, Yeong-Sik;Kim, Hong-Taek;Im, Su-Bin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.03a
    • /
    • pp.21-26
    • /
    • 1993
  • Using the well-known FLAC program an analylical parametric study was made to investigate the horizontal and vartical solution zone applied to the mountain water tunnel analysis. In the analyses two different heights(30m, 130m) of overburden soils measured from the center of a tunnel and three different coafflclants of lateral earth pressures(0.25, 0.75, 0.5) were adopted. Also the effected of plliar width between twin tunnels, having two different heighte of overburdon soils as well as different soil conditions, were analyzed.

  • PDF

Horizontal Behavior Characteristics of Umbrella-Type Micropile Applied in Soft Clay Ground subjected to Seismic Motion (연약점토지반에 적용한 우산형 마이크로파일의 지진시 수평거동 특성)

  • Kim, Soo-Bong;Son, Su-Won;Kim, Jin-Man
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.687-695
    • /
    • 2020
  • Micropile is used to improve the stability of existing structures as well as solve various geotechnical problems, such as suppressing slope activity and shearing keys of retaining walls. The existing micropile method has a significantly less capacity to resist a horizontal force than a vertical force0355 Therefore, it is necessary to develop and study an umbrella-type micropile method with excellent seismic performance that can secure seismic performance economically while minimizing structures and ground disturbance areas in the limited space of existing structures. In this study, numerical analysis was performed on the umbrella-type micropile, in which the sloped pile and vertical pile were combined, and the horizontal behavior in soft clay ground during earthquakes was analyzed. Numerical analysis showed that umbrella-type micropile suppresses horizontal displacement in soft ground, and the effect of reducing the horizontal displacement was more pronounced when the embedded depth of the slope pile was 15 m or more. The embedded depth of the micropile and horizontal displacement suppression effect was proportional. Therefore, the umbrella-type micropile has an excellent effect of suppressing horizontal displacement during earthquakes on soft clay ground.

Agricultural Radial Collector Wells in South Korea and Sustainability (한국의 농업용 방사상 집수정 현황 및 지속가능성)

  • Hong, Soun-Ouk;Song, Sung-Ho;An, Jung-Gi;Kim, Jin-Sung
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.331-337
    • /
    • 2016
  • Radial collector wells (RCWs) have been managed by Korea Rural Community Corporation (KRC) since 1983, installing 98 wells for agriculture in rural area over the country. Among them, 20 wells were installed upstream of 5 subsurface dams and the remaining were installed regardless of the subsurface dam. Most of RCWs have been developed in 1980s and 1990s, and 83 wells have been passed more than 20 years after construction. The number of horizontal arms for RCWs varies from 9 to 28, with length and diameter being 10~30 m and 65 mm, respectively. The central caisson with an inner diameter of 3.5 m was commonly constructed to a depth of 10 m. The maximum pumping rates in RCWs, which are located at distances of 10 to 1,200 m from the river, are 2,000~10,000 m3/day. RCW has a fundamental problem that reduced pumping capacity and degraded well efficiency, due to the physical and chemical clogging. From the feasibility test for improving RCW performance, specific capacity increased to 67% after rehabilitation. TV logging for RCW horizontal arm shows that near the caisson is more severe clogging. From the results of this study, KRC has established the guidebook for monitoring and improving well efficiency through physical/chemical treatment, well logging, and hydraulic tests and managed RCWs periodically with its rehabilitation methods.

Measurement and Modeling of Crosstalk and 3D Visual Fatigue Along with Horizontal Position in Mobile Glassless 3D Display Having Parallax Barrier (패럴랙스 배리어를 사용한 무안경식 휴대용 3차원 디스플레이의 수평위치에 따른 크로스톡 및 3차원 시각 피로의 측정과 모형 구축)

  • Park, JongJin;Kim, ShinWoo;Li, Hyung-Chul O.
    • Journal of Broadcast Engineering
    • /
    • v.19 no.2
    • /
    • pp.215-226
    • /
    • 2014
  • The 3D technology has been spread slowly and the reason would be attributed to the fact that most commercialized 3D displays require 3D glasses. There have been various researches on human factors of glass type 3D display. In this study we measured and modeled crosstalk as well as 3D visual fatigue induced by mobile glassless 3D display. Crosstalk as well as visual fatigue varied depending on horizontal position of the 3D mobile display. Measured crosstalk was relative low around the center of the display and it increased at the side of the display. Similar results were found in the measurement of 3D visual fatigue and discomfort. These results imply that human factors should be considered in the process of design and evaluation of mobile 3D displays.

The Kinematic Analysis of the Hand spring forward and Salto forward straight with 3/2 Turn on the Vault (도마 손 짚고 몸펴 앞 공중 돌아 540도 비틀기의 운동학적 분석)

  • Yeo, Hong-Chul;Yoon, Hee-Joong;Ryu, Ji-Seon;Jung, Chul-Jung
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.47-65
    • /
    • 2003
  • The purpose of this study was to investigate the differences of the kinematical and the kinetical factors that calculated from preflight to postflight of salto forward straight 3/2 turn motion between skitters and less-skitters. four S-VHS video cameras operating at 60Hz were used to record the performances. five elite male gymnasts were participated in this study as subjects. three-dimensional coordinates of 20 body landmarks during each trial were collected using a Direct Linear Transformation method. The digitized body landmarks were smoothed using a Butterworth second order with low pass digital filter and a cutoff frequency of 10Hz. 1. A skitter, got a high score for performance, showed shorter time and faster horizontal velocity than a less-skitter at the board contact. also, a skitter extended quickly his knee and hip joint after contacting board for preflight phase. 2. A skitter revealed faster time and horizontal velocity the vault from taking off board than a less-skiller. A skitter took a long time and high distance to get the vertical peak compared with a less-skiller. 3. For the second phase, a skitter, who executes the most optimal motions among the subjects, displayed a long flight time, a high height, and a far flight distance as well as maintaining consistent horizontal speed even at the peak of post flight. On the other side, a less-scorer displayed a slow vertical velocity, distance and a short time at the point of take-off from vault as well as low height at the peak of post flight.

Effect of Stress History on CPT-DMT Correlations in Granular Soil (응력이력이 사질토의 CPT-DMT 상관관계에 미치는 영향)

  • Lee, Moon-Joo;Choi, Sung-Kun;Kim, Min-Tae;Lee, Ju-Hyeong;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.730-739
    • /
    • 2010
  • Stress history increases in penetration resistance due to the increase in residual horizontal stress of granular soil. This study analyzes the effect of stress history on the results of CPT and DMT from calibration chamber specimen in OC as well as NC state. Test results show that the normalized cone resistance by mean effective stress correlates well with the relative density and the state parameter, whereas the normalized cone resistance with regard to vertical effective stress is a little affected by stress history. The horizontal stress index($K_D$) in DMT more reflects the influence of stress history on granular soil than the dilatometer modulus($E_D$) and cone resistance($q_c$). The $K_D/K_0$, in which the effect of stress history on $K_D$ is compensated by the at-rest coefficient of earth pressure, $K_0$, is related to relative density, state parameter and the normalized cone resistance by mean effective stress. It is also observed that the normalized dilatometer modulus by mean effective stress($E_D/{\sigma_m}'$) is unique correlated with the state parameter, regardless of stress history.

  • PDF

Numerical Simulations of the local circulation in coastal area using Four-Dimensional Data Assimilation Technique (4차원 자료동화 기법을 이용한 해안가 대기 순환의 수치 실험)

  • Kim, Cheol-Hee;Song, Chang-Keun
    • Journal of Environmental Impact Assessment
    • /
    • v.11 no.2
    • /
    • pp.79-91
    • /
    • 2002
  • Four dimensional data assimilation (FDDA) technique was considered for 3 dimensional wind field in coastal area and a set of 3 numerical experiments including control experiments has been tested for the case of the synoptic weather pattern of the weak northerly geostrophic wind with the cloud amount of less than 5/10 in autumn. A three dimensional land and sea breeze model with the sea surface temperature (SST) of 290K was performed without nudging the observed wind field and surface temperature of AWS (Automatic Weather System) for the control experiment. The results of the control experiment showed that the horizontal temperature gradient across the coastline was weakly simulated so that the strength of the sea breeze in the model was much weaker than that of observed one. The experiment with only observed horizontal wind field showed that both the pattern of local change of wind direction and the times of starting and ending of the land-sea breeze were fairly well simulated. However, the horizontal wind speed and vertical motion in the convergence zone were weakly simulated. The experiment with nudgings of both the surface temperature and wind speed showed that both the pattern of local change of wind direction and the times of starting and ending of the land-sea breeze were fairly well simulated even though the ending time of the sea breeze was delayed due to oversimulated temperature gradient along the shoreline.

Influence of Vapor Phase Turbulent Stress to the Onset of Slugging in a Horizontal Pipe (기체상의 난류 응력이 수평 유동관 내에서의 Slugging에 미치는 영향에 관한 연구)

  • Park, Jee-Won
    • Nuclear Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.45-52
    • /
    • 1995
  • In influence of the vapor phase turbulent stress (i.e., the too-phase Reynolds stress) to the characteristics of two-phase system in a horizontal pipe has been theoretically investigated. The average two-fluid model has been constituted with closure relations for stratified flow in a horizontal pipe. A vapor phase turbulent stress model for the regular interface geometry has been included. It is found that the second order waves propagate in opposite direction with almost the same speed in the moving frame of reference of the liquid phase velocity. Using the well-posedness limit of the two-phase system, the dispersed-stratified How regime boundary has been modeled. Two-phase Froude number has been found to be a convenient parameter in quantifying the onset of slugging as a function of the global void fraction. The influence of the taper phase turbulent stress was found to stabilize the flow stratification.

  • PDF

Application of Open-source OpenFOAM for Simulating Combustion and Heating Performance in Horizontal CGL Furnace (수평형 CGL 소둔로의 연소 및 가열 성능 해석을 위한 오픈소스 OpenFOAM 기반 전산유체 해석)

  • Kim, GunHong;Oh, Kyung-Teak;Kang, Deok-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.553-561
    • /
    • 2017
  • The main motivation for this study was to establish a CFD-based procedure for the analysis of heating characteristics, particularly in industrial furnaces. As certain open-source software packages have gained popularity in dealing with complex industrial problems, the OpenFOAM framework was selected for further development of advanced physical models to meet industrial requirements. In this study, the newly developed comprehensive model was applied to simulate physical processes in the full-scale horizontal furnace of a continuous galvanizing line (CGL). The numerical results obtained indicate that the current approach predicts heating characteristics reasonably well. It was also found that radiative heat transfer plays a dominant role in heating the moving strip. To improve the predictability of our method, further work is required to model the turbulence-chemistry interaction realistically, as well as to impose a physically correct thermal wall boundary condition.