• Title/Summary/Keyword: Horizontal Bending Moment

Search Result 94, Processing Time 0.019 seconds

Factors affecting force system of orthodontic loop spring (교정용 loop 스프링의 force system에 영향을 주는 요소)

  • Choy, Kwang-Chul;Kim, Kyung-Ho;Park, Young-Chel
    • The korean journal of orthodontics
    • /
    • v.29 no.5 s.76
    • /
    • pp.511-519
    • /
    • 1999
  • The shape of orthodontic retraction spring was varied and force system of each case was obtained using numerical analysis and verified with spring tester. The factors for obtaining biomechanically efficient spring under anatomic limitation were suggested as follows. 1. M/F ratio increases and L/D rate decreases as loop height increases. 2. M/F ratio increases and L/D rate decreases as incorporating more wire above minimum bending moment area. 3. M/F ratio decreases and L/D rate decrease as incorporating more wire below minimum bending moment area. 4. M/F ratio can not be greater than spring height no matter how much wire is incorporated at the apex of the loop. 5. Additional moment is necessary to obtain enough M/F ratio for translation under anatomical limitation. 6. Additional moment should be incorporated at every pah of the spring because M/F ratio and L/D rate decreases as horizontal spring length increases. 7. Material, cross section, and shape of the spring influence L/D rate, whereas M/F ratio is influenced by the shape of the spring independent from material and cross section.

  • PDF

Lateral Behavior of Abutment Piles in Full Integral Bridge During 7 Days in Response to Hydration Heat and Drying Shrinkage (수화열과 건조수축에 의한 7일간의 완전 일체식 교량 교대 말뚝기초의 횡방향 거동)

  • ;;;;Thomas A. Bolte
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.127-149
    • /
    • 2003
  • The bridge tested was 3 spans 90m-long PSC beam concrete bridge with a stub-type abutment which had a skew of 60$^{\circ}$ about the axis of bridge. A cement concrete was placed at the superstructural slab of the bridge. Inclinometers and straingauges were installed at piles as well. During 7 days-curing of superstructural slab, the pile behavior in response to hydration heat and drying shrinkage of the slab was monitored. Then monitored values were compared with the horizontal movement obtained from the HACOM program and the calculated lateral behavior obtained from the nonlinear p-y curves of pile. As a result, lateral behavior of H-piles by the field measurement occurred due to the influence of hydration heat and drying shrinkage obtained during curing of superstructural concrete. The lateral displacements by hydration heat and drying shrinkage were 2.2mmand 1.4mm respectively. It was observed as well that the inflection point of lateral displacement of pile was shown at 1.3m down from footing base. It means that the horizontal movement of stub abutment did not behave as the fixed head condition of a pile but behave as a similar condition. The measured bending stress did not show the same behavior as the fixed head condition of pile but showed a similar condition. The increment of maximum bending stress obtained from the nonlinear p-y curves of pile was about 300(kgf/$\textrm{km}^2$) and was 2 times larger than measured values regardless of installation places of straingauges. Meanwhile, lateral load, maximum lateral displacement, maximum bending stress and maximum bending moment of pile showed a linear behavior as curing of superstructural concrete slab.

Applicability of Pseudostatic Analysis for the Seismic Design of Temporary Retaining Structures in a Deep Excavation (흙막이 가시설 내진설계를 위한 등가정적해석의 유효성 분석)

  • Yu, Sang-Hwa;Kim, Dong-Chan;Kim, Jongkwan;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.9
    • /
    • pp.35-50
    • /
    • 2023
  • A preliminary study is conducted to develop seismic design guidelines for temporary retaining structures in a deep excavation. The study involved a comprehensive literature review of the seismic design standards applied domestically and internationally, as well as various methods to calculate seismic earth pressure for pseudostatic analysis. The FLAC 2D, a two-dimensional finite difference analysis program, was utilized to perform pseudostatic analysis using the Semirigid pressure method, Wood method, and Mononobe-Okabe method. The resulting analysis data for the wall moment and axial force of the strut were compared with the dynamic analysis outcomes to evaluate the applicability of pseudostatic analysis. The Semirigid pressure method predicted the most reasonable moment for Stiff walls experiencing horizontal displacements up to 0.4%H. Predicting the axial force of the strut exactly was challenging because the pseudostatic analysis cannot consider dynamic soil-structure interaction; however, it is deemed available for conservative preliminary review to ensure safety.

Inelastic Time History Analysis of an Unbraced 5-Story Steel Framed Structure for Arrangement of Semi-Rigid Connection (반강접 접합부 배치에 따른 비가새 5층 철골골조구조물의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Kim, Sin-Ae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.313-324
    • /
    • 2010
  • In this study, an unbraced five-story steel-framed structure was designed in accordance with KBC2005 to understand the features of structural behavior for the arrangement of semi-rigid connections. An inelastic time history analysis of structural models was performed, wherein all the connections were idealized as fully rigid and semi-rigid. Additionally, horizontal and vertical arrangements of semi-rigid connections were used for the models. A fiber model was utilized for the moment-curvature relationship of a steel beam and a column, a three-parameter power model for the moment-rotation angle of the semi-rigid connection, and a three-parameter model for the hysteretic behavior of a steel beam, column, and connection. The base-shear force, top displacement, story drift, required ductility for the connection, maximum bending moment of the column, beam, and connection, and distribution of the plastic hinge were investigated using four earthquake excitations with peak ground acceleration for a mean return period of 2,400 years and for the maximum base-shear force in the pushover analysis of a 5% story drift. The maximum base-shear force and story drift decreased with the outer vertical distribution of the semi-rigid connection, and the required ductility for the connection decreased with the higher horizontal distribution of the semi-rigid connection. The location of the maximum story drift differed in the pushover analysis and the time history analysis, and the magnitude was overestimated in the pushover analysis. The outer vertical distribution of the semi-rigid connection was recommended for the base-shear force, story drift, and required ductility for the connection.

Seismic Performance Evaluation of Concrete-filled U-shaped Mega Composite Beams (콘크리트 채움 U형 메가 합성보의 내진성능 평가)

  • Lee, Cheol Ho;Ahn, Jae Kwon;Kim, Dae Kyung;Park, Ji-Hun;Lee, Seung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.111-122
    • /
    • 2017
  • In this paper, the applicability of a 1900mm-deep concrete-filled U-shaped composite beam to composite ordinary moment frames (C-OMFs) was investigated based on existing test results from smaller-sized specimens and supplemental numerical studies since full-scale seismic testing of such a huge sized beam is practically impossible. The key issue was the web local buckling of concrete-filled U section under negative bending. Based on 13 existing test results compiled, the relationship between web slenderness and story drift capacity was obtained. From this relationship, a 1900mm-deep mega beam, fabricated with 25mm-thick plate was expected to experience the web local buckling at 2% story drift and eventually reach a story drift over 3%, thus much exceeding the requirements of C-OMFs. The limiting width to thickness ratio according to the 2010 AISC Specification was shown to be conservative for U section webs of this study. The test-validated supplemental nonlinear finite element analysis was also conducted to further investigate the effects of the horizontal stiffeners (used to tie two webs of a U section) on web local buckling and flexural strength. First, it is shown that the nominal plastic moment under negative bending can be developed without using the horizontal stiffeners, although the presence of the stiffeners can delay the occurrence of web local buckling and restrain its propagation. Considering all these, it is concluded that the 1900mm-deep concrete-filled U-shaped composite beam investigated can be conservatively applied to C-OMFs. Finally, some useful recommendations for the arrangement and design of the horizontal stiffeners are also recommended based on the numerical results.

Optimum Design For a Highly Integrated Tall Building System (초고밀도 고층복합빌딩시스템의 최적설계)

  • Cho, Taejun;Kim, Tae-Soo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.14-20
    • /
    • 2015
  • In this study, we propose an innovative lateral force distribution building system between tall buildings by utilizing the difference of moment of inertia, as the alternative design for highly integrated city area. Considering a tri-axial symmetric conditions and boundary conditions for the three-dimensional building structure system, a two-dimensional model is composed. In the proposed indeterminate structural model, important design variables are determined for obtaining minimum horizontal deflections, reactions and bending moments at the ground level of the buildings. Regarding a case of the provided two spatial structures connected to 4 buildings, the optimum location of middle located spatial structure is 45% from the top of the building, which minimize the end moments at the bottom of the buildings. In the considered verification examples, reduced drifts at the top location of the building systems are validated against static wind pressure loads and static earthquake loads. The suggested hybrid building system will improve the safety and reliability of the system due to the added internal truss-dome structures in terms of more than 30% reduced drift and vibration through the development of convergence of tall buildings and spatial structures.

Analytical method for the out-of-plane buckling of the jib system with middle strut

  • Wang, T.F.;Lu, N.L.;Lan, P.
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.963-980
    • /
    • 2016
  • The jib system with middle strut is widely used to achieve the large arm length in the large scale tower crane and the deployability in the mobile construction crane. In this paper, an analytical solution for the out-of-plane buckling of the jib system with middle strut is proposed. To obtain the analytical expression of the buckling characteristic equation, the method of differential equation was adopted by establishing the bending and torsional differential equation of the jib system under the instability critical state. Compared with the numerical solutions of the finite element software ANSYS, the analytical results in this work agree well with them. Therefore, the correctness of the results in this work can be confirmed. Then the influences of the lateral stiffness of the cable fixed joint, the dip angle of the strut, the inertia moment of the strut, and the horizontal position of the cable fixed joint on the out-of-plane buckling behavior of the jib system were investigated.

Seismic analysis of turbo machinery foundation: Shaking table test and computational modeling

  • Tripathy, Sungyani;Desai, Atul K
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.629-641
    • /
    • 2017
  • Foundation plays a significant role in safe and efficient turbo machinery operation. Turbo machineries generate harmonic load on the foundation due to their high speed rotating motion which causes vibration in the machinery, foundation and soil beneath the foundation. The problems caused by vibration get multiplied if the soil is poor. An improperly designed machine foundation increases the vibration and reduces machinery health leading to frequent maintenance. Hence it is very important to study the soil structure interaction and effect of machine vibration on the foundation during turbo machinery operation in the design stage itself. The present work studies the effect of harmonic load due to machine operation along with earthquake loading on the frame foundation for poor soil conditions. Various alternative foundations like rafts, barrette, batter pile and combinations of barrettes with batter pile are analyzed to study the improvements in the vibration patterns. Detailed computational analysis was carried out in SAP 2000 software; the numerical model was analyzed and compared with the shaking table experiment results. The numerical results are found to be closely matching with the experimental data which confirms the accuracy of the numerical model predictions. Both shake table and SAP 2000 results reveal that combination of barrette and batter piles with raft are best suitable for poor soil conditions because it reduces the displacement at top deck, bending moment and horizontal displacement of pile and thereby making the foundation more stable under seismic loading.

Effects of Transverse Reinforcement on Strength and Ductility of High-Strength Concrete Columns

  • Hwang, Sun Kyoung;Lim, Byung Hoon;Kim, Chang Gyo;Yun, Hyun Do;Park, Wan Shin
    • Architectural research
    • /
    • v.7 no.1
    • /
    • pp.39-48
    • /
    • 2005
  • Main objective of this research is to evaluate performance of high-strength concrete (HSC) columns for ductility and strength. Eight one-third scale columns with compressive strength of 69 MPa were subjected to a constant axial load corresponding to 30 % of the column axial load capacity and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement (${\rho}_s=1.58$, 2.25 %), tie configuration (Type H, Type C and Type D) and tie yield strength ($f_{yh}=549$ and 779 MPa). Test results show that the flexural strength of every column exceeds the calculated flexural capacity based on the equivalent concrete stress block used in the current design code. Columns with 42 % higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-02 showed ductile behaviour, showing a displacement ductility factor (${\mu}_{{\Delta}u}$) of 3.69 to 4.85, and a curvature ductility factor (${\mu}_{{\varphi}u}$) of over 10.0. With an axial load of 30 % of the axial load capacity, it is recommended that the yield strength of transverse reinforcement be held equal to or below 549 MPa.

Displacement of Quaywall Pile by Lateral Movement of Revetment on Soft Ground (연약지반상에 축조된 호안의 측방유동에 따른 안벽말뚝의 변위)

  • Shin, Eun-Chul;Ryu, In-Gi;Kim, Jong-In
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.932-939
    • /
    • 2005
  • Recently, the lateral displacement of the passive piles which installed under the revetment on soft ground is very important during the land reclamation work along the coastal line. The revetment on the soft clay develops the lateral displacement of the ground when the revetment loading is exceeded a certain limit. The lateral displacement of ground causes an excessive deformation of under structure itself and develops lateral earth pressure against the pile foundation as well. Especially passive piles subjected to lateral earth pressures are likely to have excessive horizontal displacement and large bending moment, which induces structural failure of pile foundation and harmful effects on superstructure. The subject of study is to investigate the later displacement of pile foundation during the construction of container terminal at the south port of Incheon. Actual field measurement data and finite element method(FEM) by AFFIMEX Ver 3.4 were used to analyze the displacement of pile and the vertical settlement of soft ground. This analysis was carried out at each sequence of construction work.

  • PDF