• Title/Summary/Keyword: Hopkinson pressure bar

Search Result 94, Processing Time 0.022 seconds

SHPB기법을 사용한 고변형률 속도 하중하에서의 합성수지(PH162/ PB160)의 동적 변형 거동

  • 김성현;이억섭;이종원;황시원;조규상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.47-47
    • /
    • 2004
  • 충격하중을 받는 재료의 거동에 관한 연구는 공학의 넓은 분야에 깊은 관계를 가지고 있다. 특히 동적하중을 받는 경계조건 하에서 사용되는 구조물을 정밀하게 설계 제작하는 필요성이 고조됨에 따라 여러 재료들의 고변형률 속도로 변형될 경우에 대한 역학적인 성질이 중요한 과제로 떠오르고 있다. 구조물의 건전성과 신뢰성을 향상시키기 위해서는 구조물이 실제적으로 받는 여러 조건의 하중하에서의 실험적으로 정밀하게 획득된 정확하고, 완벽한 재료 물성치가 필요하다. (중략)

  • PDF

Development of longitudinal acceleration wave decomposition method with single point measurement (단일 위치에서의 측정을 이용한 가속도 종파 분리 방법의 개발)

  • Jung, B.;Park, Y.;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.629-633
    • /
    • 2006
  • We investigated a new longitudinal acceleration wave decomposition method in time domain. The proposed method separates up- and down-stream waves with an axial strain and axial acceleration measured at a single point on the transmission path. The advantages such as low computation load and easy implementation would be possible by developing time domain under the following assumptions; low frequency range, uniform cross sectional area and elastic wave propagation. We confirmed the feasibility and performance of the method through experiment using Split Hopkinson Pressure Bar (SHPB). The method can be effective in several applications, including active vibration control with wave view point, where real time wave decomposition is necessary.

  • PDF

Dynamic Behavior Characteristics of Brass Mold at High Strain Rates (고변형율에서 황동 사출금형의 동적 거동 특성)

  • Kim, seon yong;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.1-5
    • /
    • 2008
  • Mechanical properties of the materials used for mold and industrial machinery under high strain rate loading conditions such as high impact loading are required to provide appropriate safety assessment to varying dynamically loaded mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique with a special experimental apparatus can be used to obtain the material behavior under high strain rate loading conditions. In this paper, the dynamic deformation behavior of a brass under high strain rate compressive loading conditions has been determined using the SHPB technique.

  • PDF

A finite element-experimental study of the impact of spheres on aluminium thin plates

  • Micheli, Giancarlo B.;Driemeier, Larissa;Alves, Marcilio
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.263-280
    • /
    • 2015
  • This paper describes a study of the collision of hard steel spheres against aluminium thin circular plates at speeds up to 140 m/s. The tests were monitored by a high speed camera and a chronoscope, which allowed the determination of the ballistic limit and the plate deformation pattern. Quasi-static material parameters were obtained from tests on a universal testing machine and dynamic mechanical characterization of two aluminium alloys were conducted in a split Hopkinson pressure bar. Using a damage model, the perforation of the plates was simulated by finite element analysis. Axisymmetric, shell and solid elements were employed with various parameters of the numerical analysis being thoroughly discussed, in special, the dynamic model parameters. A good agreement between experiments and the numerical analysis was obtained.

A Novel-Type Velocity-controllable Electromagnetic Coil Launcher based on Voltage Control

  • Huang, Wenkai;Huan, Shi;Xiao, Ying
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2067-2073
    • /
    • 2018
  • This paper will present the design of a novel-type velocity-controllable electromagnetic coil launcher (EMCL). By studying the influence of initial capacitor voltage on the velocity of an EMCL, the launcher voltage can be set to precisely adjust the velocity of projectile launching. The simulation of voltage and velocity in relation to time is obtained by Maxwell software. The experimental data show that for the launch accuracy to be achievable, the actual precision is 2%. Because of the excellent performance of Velocity-controllable EMCL, it can replace the air gun and applied to split Hopkinson pressure bar (SHPB).

Comparative study on dynamic properties of argillaceous siltstone and its grouting-reinforced body

  • Huang, Ming;Xu, Chao-Shui;Zhan, Jin-Wu;Wang, Jun-Bao
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.333-352
    • /
    • 2017
  • A comparison study is made between the dynamic properties of an argillaceous siltstone and its grouting-reinforced body. The purpose is to investigate how grout injection can help repair broken soft rocks. A slightly weathered argillaceous siltstone is selected, and part of the siltstone is mechanically crushed and cemented with Portland cement to simulate the grouting-reinforced body. Core specimens with the size of $50mm{\times}38mm$ are prepared from the original rock and the grouting-reinforced body. Impact tests on these samples are then carried out using a Split Hopkinson Pressure Bar (SHPB) apparatus. Failure patterns are analyzed and geotechnical parameters of the specimens are estimated. Based on the experimental results, for the grouting-reinforced body, its shock resistance is poorer than that of the original rock, and most cracks happen in the cementation boundaries between the cement mortar and the original rock particles. It was observed that the grouting-reinforced body ends up with more fragmented residues, most of them have larger fractal dimensions, and its dynamic strength is generally lower. The mass ratio of broken rocks to cement has a significant effect on its dynamic properties and there is an optimal ratio that the maximum dynamic peak strength can be achieved. The dynamic strain-softening behavior of the grouting-reinforced body is more significant compared with that of the original rock. Both the time dependent damage model and the modified overstress damage model are equally applicable to the original rock, but the former performs much better compared with the latter for the grouting-reinforced body. In addition, it was also shown that water content and impact velocity both have significant effect on dynamic properties of the original rock and its grouting-reinforced body. Higher water content leads to more small broken rock pieces, larger fractal dimensions, lower dynamic peak strength and smaller elastic modulus. However, the water content plays a minor role in fractal dimensions when the impact velocity is beyond a certain value. Higher impact loading rate leads to higher degree of fragmentation and larger fractal dimensions both in argillaceous siltstone and its grouting-reinforced body. These results provide a sound basis for the quantitative evaluation on how cement grouting can contribute to the repair of broken soft rocks.

An Experimental Study on the Dynamic Increase Factor and Strain Rate Dependency of the Tensile Strength of Rock Materials (암석재료 인장강도의 동적 증가계수 및 변형률 속도 의존성에 대한 실험적 연구)

  • Oh, Se-Wook;Choi, Byung-Hee;Min, Gyeong-Jo;Jung, Yong-Bok;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.39 no.1
    • /
    • pp.10-21
    • /
    • 2021
  • Brittle materials such as rocks and concretes exhibit large strain-rate dependency under dynamic loading conditions. This means that the mechanical properties of such materials can significantly be varied according to load velocity. Thus, the strain-rate dependency is recognized as one of the most important considerations in solving problems of blast engineering or rock dynamics. Unfortunately, however, studies for characterizing the dynamic properties of domestic rocks and other brittle materials are still insufficient in the country. In this study, dynamic tensile tests were conducted using the Hopkinson pressure bar apparatus to characterize the dynamic properties of Geochang granite and high-strength concrete specimens. The dynamic Brazilian disc test, which is suggested by ISRM, and the spalling method were applied. In general, the latter is believed to have some advantages in experiments under high-strain rate deformation. It was found from the tests that there were no significant difference between the dynamic tensile strengths obtained from the two different test methods for the two materials given. However, this was not the expected result before the tests. Actually, authors expected that there be some differences between them. Hence, it is thought that further investigations are needed to clarify this results.

Reformability evaluation of blasting-enhanced permeability in in situ leaching mining of low-permeability sandstone-type uranium deposits

  • Wei Wang;Xuanyu Liang;Qinghe Niu;Qizhi Wang;Jinyi Zhuo;Xuebin Su;Genmao Zhou;Lixin Zhao;Wei Yuan;Jiangfang Chang;Yongxiang Zheng;Jienan Pan;Zhenzhi Wang;Zhongmin Ji
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2773-2784
    • /
    • 2023
  • It is essential to evaluate the blasting-enhanced permeability (BEP) feasibility of a low-permeability sandstone-type uranium deposit. In this work, the mineral composition, reservoir physical properties and rock mechanical properties of samples from sandstone-type uranium deposits were first measured. Then, the reformability evaluation method was established by the analytic hierarchy process-entropy weight method (AHP-EWM) and the fuzzy mathematics method. Finally, evaluation results were verified by the split Hopkinson Pressure Bar (SHPB) experiment and permeability test. Results show that medium sandstone, argillaceous sandstone and siltstone exhibit excellent reformability, followed by coarse sandstone and fine sandstone, while the reformability of sandy mudstone is poor and is not able to accept BEP reservoir stimulation. The permeability improvement and the distribution of damage fractures before and after the SHPB experiment confirm the correctness of evaluation results. This research provides a reformability evaluation method for the BEP of the low-permeability sandstone-type uranium deposit, which contributes to the selection of the appropriate regional and stratigraphic horizon of the BEP and the enhanced ISL of the low-permeability sandstone-type uranium deposit.

A Study of Consequence Analysis of Physical Explosion Damage in CO2 Storage Tank (CO2 임시 저장 탱크에서의 물리적 폭발에 따른 피해영향 고찰)

  • Seo, Doo-Hyoun;Jang, Kap-Man;Lee, Jin-Han;Rhie, Kwang-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.12-19
    • /
    • 2015
  • $CO_2$ is non-flammable, non-toxic gas and not cause of chemical explosion. However, various impurities and some oxides can be included in the captured $CO_2$ inevitably. While the $CO_2$ gas was temporarily stored, the pressure in a storage tank would be reached above 100bar. Therefore, the tank could occur a physical explosion due to the corrosion of vessel or uncertainty. Evaluating the intensity of explosion can be calculated by the TNT equivalent method generally used. To describe the physical explosion, it is assumed that the capacity of a $CO_2$ temporary container is about 100 tons. In this work, physical explosion damage in a $CO_2$ storage tank is estimated by using the Hopkinson's scaling law and the injury effect of human body caused by the explosion is assessed by the probit model.

Study on the dynamic deformation characteristics of pulse shapers for controlling the shape of impact waves (충격파형 제어를 위한 펄스쉐이퍼의 동적 변형 특성에 관한 연구)

  • Yang, Jeong-Hun;Jo, Sang-Ho;Kim, Won-Beom;Kim, Seung-Gon;Song, Yeong-Su;Seong, Nak-Hun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.198-202
    • /
    • 2009
  • Split Hopkinson pressure bar(SHPB) is used to obtain compressive stress-strain data and deformation characteristics of brittle materials such as rock and concrete. SHPB demands both dynamic stress equilibrium condition and nearly constant strain rate before the failure of the specimen. Pulse shape technique, which places a thin metal disk between launched impact bar and incident bar, should be adopted to satisfy both conditions. In this study, metallic disks with various shapes were used to control the incident impact wave. The results show that the peak value of stress and the length of waves increased with decreasing thickness and diameter of the pulse shaper. In order to investigate shape and strain rate-dependency of the pulse shapers, dynamic compressive stress-strain curves were obtained and analyzed.

  • PDF