• Title/Summary/Keyword: Hopfield neural networks

Search Result 36, Processing Time 0.018 seconds

STEPANOV ALMOST PERIODIC SOLUTIONS OF CLIFFORD-VALUED NEURAL NETWORKS

  • Lee, Hyun Mork
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.39-52
    • /
    • 2022
  • We introduce Clifford-valued neural networks with leakage delays. Furthermore, we study the uniqueness and existence of Clifford-valued Hopfield artificial neural networks having the Stepanov weighted pseudo almost periodic forcing terms on leakage delay terms. However the noncommutativity of the Clifford numbers' multiplication made our investigation diffcult, so our results are obtained by decomposing Clifford-valued neural networks into real-valued neural networks. Our analysis is based on the differential inequality techniques and the Banach contraction mapping principle.

Study on Neurons Input_Resistance in Hopfield Neural Networks (홉필드 신경회로망에서 뉴런의 입력단저항에 관한 연구)

  • 강민제;이상준
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.2
    • /
    • pp.148-155
    • /
    • 2001
  • 뉴런의 입력단에 연결된 저항은 하드웨어 구현 시 필요하다고 알려져 있으나 어떤 영향을 미치는 가에 대한 것은 많이 알려져 있지 않다. 다만, 회로망의 안정성과 수렴하는 속도에 부분적으로 영향을 미치는 것으로 알려져 있다. 이 논문에서는 입력단에 연결된 저항이 신경회로망의 평형점 위치 및 평형점 특성에 미치는 영향 등을 분석하였다.

  • PDF

Computational Neural Networks (연산회로 신경망)

  • 강민제
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.80-86
    • /
    • 2002
  • A neural network structure which is able to perform the operations of analog addition and linear equation is proposed. The network employs Hopfkeld's model of a neuron with the connection elements specified on the basis of an analysis of the energy function. The analog addition network and linear equation network are designed by using Hopfield's A/D converter and linear programming respectively. Simulation using Pspice has shown convergence predominently to the correct global minima.

  • PDF

A Shortest Path Routing Algorithm using a Modified Hopfield Neural Network (수정된 홉필드 신경망을 이용한 최단 경로 라우팅 알고리즘)

  • Ahn, Chang-Wook;Ramakrishna, R.S.;Choi, In-Chan;Kang, Chung-Gu
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.4
    • /
    • pp.386-396
    • /
    • 2002
  • This paper presents a neural network-based near-optimal routing algorithm. It employs a modified Hopfield Neural Network (MHNN) as a means to solve the shortest path problem. It uses every piece of information that is available at the peripheral neurons in addition to the highly correlated information that is available at the local neuron. Consequently, every neuron converges speedily and optimally to a stable state. The convergence is faster than what is usually found in algorithms that employ conventional Hopfield neural networks. Computer simulations support the indicated claims. The results are relatively independent of network topology for almost all source-destination pairs, which nay be useful for implementing the routing algorithms appropriate to multi -hop packet radio networks with time-varying network topology.

The shortest path finding algorithm using neural network

  • Hong, Sung-Gi;Ohm, Taeduck;Jeong, Il-Kwon;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.434-439
    • /
    • 1994
  • Recently neural networks leave been proposed as new computational tools for solving constrained optimization problems because of its computational power. In this paper, the shortest path finding algorithm is proposed by rising a Hopfield type neural network. In order to design a Hopfield type neural network, an energy function must be defined at first. To obtain this energy function, the concept of a vector-represented network is introduced to describe the connected path. Through computer simulations, it will be shown that the proposed algorithm works very well in many cases. The local minima problem of a Hopfield type neural network is discussed.

  • PDF

Hopfield neuron based nonlinear constrained programming to fuzzy structural engineering optimization

  • Shih, C.J.;Chang, C.C.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.5
    • /
    • pp.485-502
    • /
    • 1999
  • Using the continuous Hopfield network model as the basis to solve the general crisp and fuzzy constrained optimization problem is presented and examined. The model lies in its transformation to a parallel algorithm which distributes the work of numerical optimization to several simultaneously computing processors. The method is applied to different structural engineering design problems that demonstrate this usefulness, satisfaction or potential. The computing algorithm has been given and discussed for a designer who can program it without difficulty.

Nonlinear Programming Circuit using Neural Networks (신경회로망을 이용한 비선형 프로그래밍회로)

  • 강민제
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.4
    • /
    • pp.77-84
    • /
    • 2001
  • Since Hopfield introduced the neural network for liner programming problems many papers have been published about it and some of them are about nonlinear programming problems Therefore nonlinear, cost function problem has been solved however nonlinear constraints problem has not been solved In this paper I have proposed the general nonlinear programming neural networks which minimize cost function with nonlinear constraints.

  • PDF

Adaptive learning based on bit-significance optimization of the Hopfield model and its electro-optical implementation for correlated images

  • Lee, Soo-Young
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.85-88
    • /
    • 1989
  • Introducing and optimizing it-significance to the Hopfield model, ten highly correlated binary images, i.e., numbers "0" to "9", are successfully stored and retrieved in a 6x8 node system. Unlike many other neural networks models, this model has stronger error correction capability for correlated images such as "6", "8", "3", and "9". the bit-significance optimization is regarded as an adaptive learning process based on least-mean-square error algorithm, and may be implemented with another neural nets optimizer. A design for electro-optic implementation including the adaptive optimization networks is also introduced.uding the adaptive optimization networks is also introduced.

  • PDF

Damaged Traffic Sign Recognition using Hopfield Networks and Fuzzy Max-Min Neural Network (홉필드 네트워크와 퍼지 Max-Min 신경망을 이용한 손상된 교통 표지판 인식)

  • Kim, Kwang Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1630-1636
    • /
    • 2022
  • The results of current method of traffic sign detection gets hindered by environmental conditions and the traffic sign's condition as well. Therefore, in this paper, we propose a method of improving detection performance of damaged traffic signs by utilizing Hopfield Network and Fuzzy Max-Min Neural Network. In this proposed method, the characteristics of damaged traffic signs are analyzed and those characteristics are configured as the training pattern to be used by Fuzzy Max-Min Neural Network to initially classify the characteristics of the traffic signs. The images with initial characteristics that has been classified are restored by using Hopfield Network. The images restored with Hopfield Network are classified by the Fuzzy Max-Min Neural Network onces again to finally classify and detect the damaged traffic signs. 8 traffic signs with varying degrees of damage are used to evaluate the performance of the proposed method which resulted with an average of 38.76% improvement on classification performance than the Fuzzy Max-Min Neural Network.