• Title/Summary/Keyword: Hop_count

Search Result 138, Processing Time 0.033 seconds

Hopping Routing Scheme to Resolve the Hot Spot Problem of Periodic Monitoring Services in Wireless Sensor Networks (주기적 모니터링 센서 네트워크에서 핫 스팟 문제 해결을 위한 호핑 라우팅 기법)

  • Heo, Seok-Yeol;Lee, Wan-Jik;Jang, Seong-Sik;Byun, Tae-Young;Lee, Won-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2340-2349
    • /
    • 2009
  • In this paper we proposed a hopping routing scheme to resolve the hot spot problem for periodic monitoring services in wireless sensor networks. Our hopping routing scheme constructs load balanced routing path, where an amount of energy consumption of all nodes in the sensor networks is predictable. Load balanced routing paths can be obtained from horizontal hopping transmission scheme which balances the load of the sensor nodes in the same area, and also from vertical hopping transmission scheme which balances the load of the sensor nodes in the other area. The direct transmission count numbers as load balancing parameter for vertical hopping transmission are derived using the energy consumption model of the sensor nodes. The experimental results show that the proposed hopping scheme resolves the hot spot problem effectively. The efficiency of hopping routing scheme is also shown by comparison with other routing scheme such as multi-hop, direct transmission and clustering.

Clustering and Routing Algorithm for QoS Guarantee in Wireless Sensor Networks (무선 센서 네트워크에서 QoS 보장을 위한 클러스터링 및 라우팅 알고리즘)

  • Kim, Soo-Bum;Kim, Sung-Chun
    • The KIPS Transactions:PartC
    • /
    • v.17C no.2
    • /
    • pp.189-196
    • /
    • 2010
  • The LEACH does not use flooding method for data transmission and this makes low power consumption. So performance of the WSN is increased. On the other hand, QoS based algorithm which use restricted flooding method in WSN also achieves low power consuming rate by reducing the number of nodes that are participated in routing path selection. But when the data is delivered to the sink node, the LEACH choose a routing path which has a small hop count. And it leads that the performance of the entire network is worse. In the paper we propose a QoS based energy efficient clustering and routing algorithm in WSN. I classify the type of packet with two classes, based on the energy efficiency that is the most important issue in WSN. We provide the differentiated services according to the different type of packet. Simulation results evaluated by the NS-2 show that proposed algorithm extended the network lifetime 2.47 times at average. And each of the case in the class 1 and class 2 data packet, the throughput is improved 312% and 61% each.

Improved Star Topology Aggregation using Line Segment (라인 세그먼트를 이용한 향상된 Star Topology Aggregation)

  • Kim, Nam-Hee
    • The KIPS Transactions:PartC
    • /
    • v.11C no.5
    • /
    • pp.645-652
    • /
    • 2004
  • In this paper, we aggregate multi-links information between boundary nodes using the line segment scheme that aggregates topology in-formation within PG referring bandwidth and delay parameter. The proposed scheme can search multi-links efficiently using the depth priority method based on hop count instead of searching all links. To do this, we propose a modified line segment algorithm using two line segment method that represents two points which consist of delay-bandwidth pair to reduce topology information and provide a flexibility to the multi pie-links aggregation. And we apply it to current star topology aggregation. To evaluate performance of the proposed scheme, we compare/analyze the current method with the proposed scheme with respect to call success rate, access time and crankback rate. Through the simulation result analysis, the proposed star topology aggregation scheme presents the better performance than existing scheme.

Independent Set Bin Packing Algorithm for Routing and Wavelength Assignment (RWA) Problem (경로설정과 파장 배정 문제의 독립집합 상자 채우기 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.1
    • /
    • pp.111-118
    • /
    • 2015
  • This paper deals with the routing and wavelength assignment problem (RWAP) that decides the best lightpaths for multiple packet demands for (s,t) in optical communication and assigns the minimum number of wavelengths to given lightpaths. There has been unknown of polynomial-time algorithm to obtain the optimal solution for RWAP. Hence, the RWAP is classified as NP-complete problem and one can obtain the approximate solution in polynomial-time. This paper decides the shortest main and alternate lightpath with same hop count for all (s,t) for given network in advance. When the actual demands of communication for particular multiple packet for (s,t), we decrease the maximum utilized edge into b utilized number using these dual-paths. Then, we put these (s,t) into b-wavelength bins without duplicated edge. This algorithm can be get the optimal solution within O(kn) computational complexity. For two experimental data, the proposed algorithm shows that can be obtain the known optimal solution.

Determination Method of TTL for Improving Energy Efficiency of Wormhole Attack Defense Mechanism in WSN (무선 센서 네트워크에서 웜홀 공격 방어기법의 에너지 효율향상을 위한 TTL 결정 기법)

  • Lee, Sun-Ho;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.149-155
    • /
    • 2009
  • Attacks in wireless sensor networks (WSN), are similar to the attacks in ad-hoc networks because there are deployed on a wireless environment. However existing security mechanism cannot apply to WSN, because it has limited resource and hostile environment. One of the typical attack in WSN is setting up wrong route that using wormhole. To overcome this threat, Ji-Hoon Yun et al. proposed WODEM (WOrmhole attack DEfense Mechanism) which can detect and counter with wormhole. In this scheme, it can detect and counter with wormhole attacks by comparing hop count and initial TTL (Time To Live) which is pre-defined. The selection of a initial TTL is important since it can provide a tradeoff between detection ability ratio and energy consumption. In this paper, we proposed a fuzzy rule-based system for TTL determination that can conserve energy, while it provides sufficient detection ratio in wormhole attack.

Analysis of the Bogus Routing Information Attacks in Sensor Networks (센서 네트워크에서 AODV 라우팅 정보 변조공격에 대한 분석)

  • Lee, Myung-Jin;Kim, Mi-Hui;Chae, Ki-Joon;Kim, Ho-Won
    • The KIPS Transactions:PartC
    • /
    • v.14C no.3 s.113
    • /
    • pp.229-238
    • /
    • 2007
  • Sensor networks consist of many tiny sensor nodes that collaborate among themselves to collect, process, analyze, and disseminate data. In sensor networks, sensor nodes are typically powered by batteries, and have limited computing resources. Moreover, the redeployment of nodes by energy exhaustion or their movement makes network topology change dynamically. These features incur problems that do not appear in traditional, wired networks. Security in sensor networks is challenging problem due to the nature of wireless communication and the lack of resources. Several efforts are underway to provide security services in sensor networks, but most of them are preventive approaches based on cryptography. However, sensor nodes are extremely vulnerable to capture or key compromise. To ensure the security of the network, it is critical to develop suity mechanisms that can survive malicious attacks from "insiders" who have access to the keying materials or the full control of some nodes. In order to protect against insider attacks, it is necessary to understand how an insider can attack a sensor network. Several attacks have been discussed in the literature. However, insider attacks in general have not been thoroughly studied and verified. In this paper, we study the insider attacks against routing protocols in sensor networks using the Ad-hoc On-Demand Distance Vector (AODV) protocol. We identify the goals of attack, and then study how to achieve these goals by modifying of the routing messages. Finally, with the simulation we study how an attacker affects the sensor networks. After we understand the features of inside attacker, we propose a detect mechanism using hop count information.

Load Balancing of Unidirectional Dual-link CC-NUMA System Using Dynamic Routing Method (단방향 이중연결 CC-NUMA 시스템의 동적 부하 대응 경로 설정 기법)

  • Suh Hyo-Joon
    • The KIPS Transactions:PartA
    • /
    • v.12A no.6 s.96
    • /
    • pp.557-562
    • /
    • 2005
  • Throughput and latency of interconnection network are important factors of the performance of multiprocessor systems. The dual-link CC-NUMA architecture using point-to-point unidirectional link is one of the popular structures in high-end commercial systems. In terms of optimal path between nodes, several paths exist with the optimal hop count by its native multi-path structure. Furthermore, transaction latency between nodes is affected by congestion of links on the transaction path. Hence the transaction latency may get worse if the transactions make a hot spot on some links. In this paper, I propose a dynamic transaction routing algorithm that maintains the balanced link utilization with the optimal path length, and I compare the performance with the fixed path method on the dual-link CC-NUMA systems. By the proposed method, the link competition is alleviated by the real-time path selection, and consequently, dynamic transaction algorithm shows a better performance. The program-driven simulation results show $1{\~}10\%$ improved fluctuation of link utilization, $1{\~}3\%$ enhanced acquirement of link, and $1{\~}6\%$ improved system performance.

Method of Detecting and Isolating an Attacker Node that Falsified AODV Routing Information in Ad-hoc Sensor Network (애드혹 센서 네트워크에서 AODV 라우팅 정보변조 공격노드 탐지 및 추출기법)

  • Lee, Jae-Hyun;Kim, Jin-Hee;Kwon, Kyung-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2293-2300
    • /
    • 2008
  • In ad-hoc sensor network, AODV routing information is disclosed to other nodes because AODV protocol doesn't have any security mechanisms. The problem of AODV is that an attacker can falsify the routing information in RREQ packet. If an attacker broadcasts the falsified packet, other nodes will update routing table based on the falsified one so that the path passing through the attacker itself can be considered as a shortest path. In this paper, we design the routing-information-spoofing attack such as falsifying source sequence number and hop count fields in RREQ packet. And we suggest an efficient scheme for detecting the attackers and isolating those nodes from the network without extra security modules. The proposed scheme doesn't employ cryptographic algorithm and authentication to reduce network overhead. We used NS-2 simulation to evaluate the network performance. And we analyzed the simulation results on three cases such as an existing normal AODV, AODV under the attack and proposed AODV. Simulation results using NS2 show that the AODV using proposed scheme can protect the routing-information-spoofing attack and the total n umber of received packets for destination node is almost same as the existing norm at AODV.