• Title/Summary/Keyword: Hop count

Search Result 138, Processing Time 0.028 seconds

An Efficient Reactive Routing Protocol based on the Multi-rate Aware MAC for Mobile Ad Hoc Networks (이동 애드 혹 망에서 다중 전송속도를 갖는 MAC 기반의 효율적인 반응형 라우팅 프로토콜)

  • Lee, Jae-Hwoon;Lim, Yu-Jin;Ahn, Sang-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.15C no.1
    • /
    • pp.45-50
    • /
    • 2008
  • Mobile ad hoc networks (MANETs) allow mobile nodes to communicate among themselves via wireless multiple hops without the help of the wired infrastructure. Therefore, in the MANET, a route setup mechanism that makes nodes not within each other's transmission range communicate is required and, for this, the Ad-hoc On-demand Distance Vector (AODV) was proposed as one of the reactive routing protocols well suited for the characteristics of the MANET. AODV uses the hop count as the routing metric and, as a result, a node selects the farthest neighbor node as its next hop on a route, which results in a problem of deteriorating the overall network throughput because of selecting a relatively low data rate route. In this paper, we propose an efficient reactive routing protocol based on the multi-rate aware MAC. Through the simulations, we analyze the performance of our proposed mechanism and, from the simulation results, we show that our proposed mechanism outperforms the existing mechanism.

Performance Evaluation of the new AODV Routing Protocol with Cross-Layer Design Approach (교차 계층 설계 기법을 사용한 새로운 AODV 라우팅 프로토콜 설계 및 성능평가)

  • Jang, Jaeshin;Wie, Sunghong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.6
    • /
    • pp.768-777
    • /
    • 2020
  • In this paper, we describe recent research results on AODV routing protocol, which is widely deployed at mobile ad hoc networks, and AODV related routing protocols with multi-path routing schemes. We suggest the critical problems which minimum hop routing schemes have, such as AODV routing protocol, and then, propose a new C-AODV routing protocol with two routing metrics: the primary metric is the hop count, the secondary metric is the sum of link delay times. We implemented C-AODV protocol by modifying AODV at the NS-3, and thus, elaborate on how we change the original AODV source code of NS-3 in order to implement the C-AODV scheme. We show numerical comparison of C-AODV scheme with the original AODV scheme and then, discuss how much the C-AODV enhances routing performance over AODV protocol. In conclusion, we present future research items.

Node ID-based Service Discovery for Mobile Ad Hoc Networks (모바일 애드-혹 네트워크를 위한 노드 ID 기반 서비스 디스커버리 기법)

  • Kang, Eun-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.12
    • /
    • pp.109-117
    • /
    • 2009
  • In this paper, we propose an efficient service discovery scheme that combines peer-to-peer caching advertisement and node ID-based selective forwarding service requests. P2P caching advertisement quickly spreads available service information and reduces average response hop count since service information store in neighbor node cache. In addition, node ID-based service requests can minimize network transmission delay and can reduce network load since do not broadcast to all neighbor node. Proposed scheme does not require a central lookup server or registry and not rely on flooding that create a number of transmission messages. Simulation results show that proposed scheme improved network loads and response times since reduce a lot of messages and reduce average response hop counts using adaptive selective nodes among neighbor nodes compared to traditional flooding-based protocol.

A Multi-objective Ant Colony Optimization Algorithm for Real Time Intrusion Detection Routing in Sensor Network (센서 네트워크에서 실시간 침입탐지 라우팅을 위한 다목적 개미 군집 최적화 알고리즘)

  • Kang, Seung-Ho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.5
    • /
    • pp.191-198
    • /
    • 2013
  • It is required to transmit data through shorter path between sensor and base node for real time intrusion detection in wireless sensor networks (WSN) with a mobile base node. Because minimum Wiener index spanning tree (MWST) based routing approach guarantees lower average hop count than that of minimum spanning tree (MST) based routing method in WSN, it is known that MWST based routing is appropriate for real time intrusion detection. However, the minimum Wiener index spanning tree problem which aims to find a spanning tree which has the minimum Wiener index from a given weighted graph was proved to be a NP-hard. And owing to its high dependency on certain nodes, minimum Wiener index tree based routing method has a shorter network lifetime than that of minimum spanning tree based routing method. In this paper, we propose a multi-objective ant colony optimization algorithm to tackle these problems, so that it can be used to detect intrusion in real time in wireless sensor networks with a mobile base node. And we compare the results of our proposed method with MST based routing and MWST based routing in respect to average hop count, network energy consumption and network lifetime by simulation.

Doughnut: An improved P2P Pastry Overlay Network with Efficient Locality and Caching (Doughnut: 효율적인 지역성 및 캐슁을 사용하는 향상된 P2P Pastry 오버레이 네트워크)

  • Kim, Myung-Won;Kwak, Hu-Keun;Chung, Kyu-Sik
    • The KIPS Transactions:PartC
    • /
    • v.16C no.2
    • /
    • pp.245-256
    • /
    • 2009
  • Pastry overlay network is one of structured P2Ps using DHT(Distributed Hash Table). To reduce the number of messages among nodes, Rosary and LAR have been proposed by exploiting spatial locality and caching, respectively, in the Pastry. Rosary consists of Inter-Pastry and Intra-Pastry. A root node is assigned as a representative in each Intra-Pastry and it has the responsibility of Inter-Pastry and Intra-Pastry routing. Therefore, Rosary has several disadvantages; 1) low fault tolerance in case of root node failure 2) routing hop count increases because of the use of root nodes compared to the existing structured P2Ps, and 3) the communication load is concentrated in some specific areas. LAR has inefficient problems in that caching is not distributed among nodes in Intra-Pastry and caching is used by only nodes in the Intra-Pastry. In this paper, we propose an improved Pastry called Doughnut to overcome the above problems of Rosary and LAR. By dividing nodes with the local characteristics, the Doughnut consists of Inter-Pastry and Intra-Pastry, and all nodes have the responsibility of Inter-Pastry and Intra-Pastry routing. This results in that all nodes perform the role of the existing root node. This solves the problems of the reducing of fault-tolerance, the increasing of routing hop count, and the not-distributed communication load. Also Doughnut can use cache effectively because it guarantees the even cache distribution in local(Intra-Pastry) and the cache contents in local can be used in the other local. The proposed algorithm is implemented using simulator and the experimental results show the effectiveness of the proposed method compared to the existing method.

Reliable Hybrid Multicast using Multi-layer Transmission Path (다계층 전송경로를 이용한 신뢰성 있는 하이브리드 멀티캐스트)

  • Gu, Myeong-Mo;Kim, Bong-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.35-40
    • /
    • 2019
  • It is important to constantly provide service in real-time multimedia applications using multicast. Transmission path reconstruction occurs in hybrid multicast using Internet Protocol (IP) multicast and ALM in order to adapt the network status to things like congestion. So, there is a problem in which real-time QoS is reduced, caused by an increase in end-to-end delay. In this paper, we want to solve this problem through multi-layer transmission path construction. In the proposed method, we deploy the control server and application layer overlay host (ALOH) in each multicast domain (MD) for hybrid multicast construction. After the control server receives the control information from an ALOH that joins the MD, it makes a group based on the hop count and sends it to the ALOH in each MD. The ALOH in the MD performs the role of sending the packet to another ALOH and constructs the multi-layered transmission path in order of priority by using control information that is received from the control server and based on the delay between neighboring ALOHs. When congestion occurs in, or is absent from, the ALOH in the upper MD, the ALOH selects the path with the highest priority in order to reduce end-to-end delay. Simulation results show that the proposed method could reduce the end-to-end delay to less than 289 ms, on average, under congestion status.

Design and Implementation of Multi-rate Broadcast based Link Quality Measurement for WLAN Mesh Network (다중 전송률을 반영한 무선랜 매쉬 링크 품질 측정방법의 설계 및 구현)

  • Lee, Duck-Hwan;Yang, Seung-Chur;Kim, Jong-Deok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9A
    • /
    • pp.801-808
    • /
    • 2011
  • We propose MBAP(Multi-rate Broadcast Active Probing) technique to get the right measurements for link quality in Wireless Mesh Network (WMN). Most routing protocols for WMN make use of link quality-aware routing metrics, such as ETX(Expected Transmission Count) and ETT(Expected Transmission Time), while the hop count is usually used in MANET (Mobile Ad-hoc NETwork). A broadcast based active proving technique is adopted in the previous studies to get the ETX or ETT of a link. However this technique does not reflect the multi-rate feature of WLAN because it uses a single fixed transmission rate for broadcast which usually differs from the actual rate used in data transmissions. MBAP overcomes this shortage by exploiting various rate broadcast frames for probing. We implement MBAP on linux system by modifying WLAN driver and related kernel sub-systems. Experimental results show that MBAP can capture link quality more accurately than the existing techniques.

Improved Routing Metrics for Energy Constrained Interconnected Devices in Low-Power and Lossy Networks

  • Hassan, Ali;Alshomrani, Saleh;Altalhi, Abdulrahman;Ahsan, Syed
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.327-332
    • /
    • 2016
  • The routing protocol for low-power and lossy networks (RPL) is an internet protocol based routing protocol developed and standardized by IETF in 2012 to support a wide range of applications for low-power and lossy-networks (LLNs). In LLNs consisting of resource-constrained devices, the energy consumption of battery powered sensing devices during network operations can greatly impact network lifetime. In the case of inefficient route selection, the energy depletion from even a few nodes in the network can damage network integrity and reliability by creating holes in the network. In this paper, a composite energy-aware node metric ($RER_{BDI}$) is proposed for RPL; this metric uses both the residual energy ratio (RER) of the nodes and their battery discharge index. This composite metric helps avoid overburdening power depleted network nodes during packet routing from the source towards the destination oriented directed acyclic graph root node. Additionally, an objective function is defined for RPL, which combines the node metric $RER_{BDI}$ and the expected transmission count (ETX) link quality metric; this helps to improve the overall network packet delivery ratio. The COOJA simulator is used to evaluate the performance of the proposed scheme. The simulations show encouraging results for the proposed scheme in terms of network lifetime, packet delivery ratio and energy consumption, when compared to the most popular schemes for RPL like ETX, hop-count and RER.

An Efficient Addressing Scheme Using (x, y) Coordinates in Environments of Smart Grid (스마트 그리드 환경에서 (x, y) 좌표값을 이용한 효율적인 주소 할당 방법)

  • Cho, Yang-Hyun;Lim, Song-Bin;Kim, Gyung-Mok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.1
    • /
    • pp.61-69
    • /
    • 2012
  • Smart Grid is the next-generation intelligent power grid that maximizes energy efficiency with the convergence of IT technologies and the existing power grid. Smart Grid is created solution for standardization and interoperability. Smart Grid industry enables consumers to check power rates in real time for active power consumption. It also enables suppliers to measure their expected power generation load, which stabilizes the operation of the power system. Smart industy was ecolved actively cause Wireless communication is being considered for AMI system and wireless communication using ZigBee sensor has been applied in various industly. In this paper, we proposed efficient addressing scheme for improving the performance of the routing algorithm using ZigBee in Smart Grid environment. A distributed address allocation scheme used an existing algorithm has wasted address space. Therefore proposing x, y coordinate axes from divide address space of 16 bit to solve this problem. Each node was reduced not only bitwise but also multi hop using the coordinate axes while routing than Cskip algorithm. I compared the performance between the standard and the proposed mechanism through the numerical analysis. Simulation verify performance about decrease averaging multi hop count that compare proposing algorithm and another. The numerical analysis results show that proposed algorithm reduce multi hop than ZigBee distributed address assignment and another.

A Distributed address allocation scheme based on three-dimensional coordinate for efficient routing in WBAN (WBAN 환경에서 효율적인 라우팅을 위한 3차원 좌표 주소할당 기법의 적용)

  • Lee, Jun-Hyuk
    • Journal of Digital Contents Society
    • /
    • v.15 no.6
    • /
    • pp.663-673
    • /
    • 2014
  • The WBAN technology means a short distance wireless network which provides each device interactive communication by connecting devices inside and outside of body. Standardization on the physical layer, data link layer, network layer and application layer is in progress by IEEE 802.15.6 TG BAN. Wireless body area network is usually configured in energy efficient using sensor and zigbee device due to the power limitation and the characteristics of human body. Wireless sensor network consist of sensor field and sink node. Sensor field are composed a lot of sensor node and sink node collect sensing data. Wireless sensor network has capacity of the self constitution by protocol where placed in large area without fixed position. In this paper, we proposed the efficient addressing scheme for improving the performance of routing algorithm by using ZigBee in WBAN environment. A distributed address allocation scheme used an existing algorithm that has wasted in address space. Therefore proposing x, y and z coordinate axes from divided address space of 16 bit to solve this problems. Each node was reduced not only bitwise but also multi hop using the coordinate axes while routing than Cskip algorithm. I compared the performance between the standard and the proposed mechanism through the numerical analysis. Simulation verified performance about decrease averaging multi hop count that compare proposing algorithm and another. The numerical analysis results show that proposed algorithm reduced the multi hop better than ZigBee distributed address assignment