• Title/Summary/Keyword: Homoserine

Search Result 72, Processing Time 0.024 seconds

Evaluation of Various Oligotrophic Media for Cultivation of Previously Uncultured Soil Bacteria (난배양성 토양세균의 배양법 평가 및 신 분류군의 순수분리)

  • Kim, Do-Hyoung;Lee, Sang-Hoon;Cho, Jae-Chang
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.352-357
    • /
    • 2008
  • We evaluated cultivation methods to obtain pure cultures of previously uncultivated bacteria from soil. Soil bacteria (suspensions) were inoculated onto various oligotrophic media with one of the following additives: 1) soil extract; 2) anthraquinone disulfonate (humic acid analogue); 3) acyl homoserine lactones (quorum-signaling compounds); 4) catalase (for the protection of bacteria from exogenous peroxides). After the relatively long period (60 days) of incubation with elevated concentrations of $CO_2$ (5%, v/v), the media containing catalase showed the highest colony count. We purified 147 randomly selected colonies from the media and the isolates were subjected to the phylogenetic analyses of their 16S rRNA gene sequences. Phylogenetic analysis revealed that approximately 30% of the isolates might belong to novel species or novel family, suggesting that the media and incubation conditions used could be useful for the cultivation of as-yet-uncultured bacteria. Especially, bacteria belonging to the phylum Acidobacteria, ubiquitous bacterial taxon known as an uncultured bacterial group (at least difficult to culture from environmental samples), were successfully cultured in this study.

Practice of industrial strain improvement (제 1차 한.중 생명공학 심포지움)

  • Lei, Zhao-zu
    • The Microorganisms and Industry
    • /
    • v.19 no.2
    • /
    • pp.34-41
    • /
    • 1993
  • Industrial strain improvement is concerned with developing or modifying microorganisms used in production of commercially important fermentation products. The aim is to reduce the production cost by improving productivity of a strain and manipulating specific characteristics such as the ability to utilize cheaper raw materials or resist bacteriophages. The traditional empirical approach to strain improvement is mutation combined with selection and breeding techniques. It is still used by us to improve the productivity of organisms in amino acids, organic acids and enzymes production. The breeding of high L-lysine-producing strain Au112 is one of the outstanding examples of this approach. It is a homoserine auxotroph with AEC, TA double metabolic analogue resistant markers. The yield reaches 100 g/l. Besides, the citric acid-producing organism Aspergillus niger, Co827, its productivity reaches the advanced level in the world, is also the result of a series mutations especially with $^60Co{\gamma}$-radiation. The thermostable .alpha.-amylase producing strain A 4041 is the third example. By combining physical and chemical mutations, the strain A 4041 becomes an asporogenous, catabolite derepressed mutant with rifamycin resistant and methionine, arginine auxotroph markers. The .alpha.-amylase activity reaches 200 units/ml. The fourth successful example of mutation in strain improvement is the glucoamylase-producing strain Aspergillus niger SP56, its enzyme activity is 20,000 units/ml, 4 times of that of the parental strain UV-11. Recently, recombinant DNA approach provides a worthwhile alternative strategy to industrial strain improvement. This technique had been used by us to increase the thermostable .alpha.-amylase production and on some genetic researches.

  • PDF

Metabolic Differentiation of Saccharomyces cerevisiae by Ketoconazole Treatment

  • Keum, Young Soo;Kim, Jeong-Han
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.2
    • /
    • pp.109-112
    • /
    • 2013
  • Azole fungicides are one of the most wide-spread antifungal compounds in agriculture and pharmaceutical applications. Their major mode of action is the inhibition of ergosterol biosynthesis, giving depletion of ergosterol, precursors and abnormal steroids. However, metabolic consequences of such inhibition, other than steroidal metabolitesare not well established. Comprehensive metabolic profiles of Saccharomyces cerevisiae has been presented in this study. Wild type yeast was treated either with glucose as control or azole fungicide (ketoconazole). Both polar metabolites and lipids were analyzed with gas chromatography-mass spectrometry. Approximately over 180 metabolites were characterized, among which 18 of them were accumulated or depleted by fungicide treatment. Steroid profile gives the most prominent differences, including the accumulation of lanosterol and the depletion of zymosterol and ergosterol. However, the polar metabolite profile was also highly different in pesticide treatment. The concentration of proline and its precursors, glutamate and ornithine were markedly reduced by ketoconazole. Lysine and glycine level was also decreased while the concentrations of serine and homoserine were increased. The overall metabolic profile indicates that azole fungicide treatment induces the depletion of many polar metabolites, which are important in stress response.

Proteomic Analysis of the GacA Response Regulator in Pseudomonas chlororaphis O6

  • Anderson, Anne J.;Kim, Young Cheol
    • Research in Plant Disease
    • /
    • v.24 no.2
    • /
    • pp.162-169
    • /
    • 2018
  • The GacS/GacA system in the root colonizer Pseudomonas chlororaphis O6 is a key regulatory system of many traits relevant to the plant probiotic nature of this bacterium. The work in this paper elucidates proteins using proteomics approach in P. chlororaphis O6 under the control of the cytoplasmic regulatory protein, GacA. A gacA mutant of P. chlororaphis O6 showed loss in production of phenazines, acyl homoserine lactones, hydrogen cyanide, and protease, changes that were associated with reduced in vitro antifungal activity against plant fungal pathogens. Production of iron-chelating siderophore was significantly enhanced in the gacA mutant, also paralleling changes in a gacS mutant. However, proteomic analysis revealed proteins (13 downregulated and 7 upregulated proteins in the mutant compared to parental strain) under GacA control that were not apparent by a proteomic study of a gacS mutant. The putative identity of the downregulated proteins suggested that a gacA mutant would have altered transport potentials. Notable would be a predicted loss of type-VI secretion and PEP-dependent transport. Study of mutants of these GacA-regulated proteins will indicate further the features required for probiotic potential in this rhizobacterium.

국내기탁기관의 현황 2

  • 오두환
    • The Microorganisms and Industry
    • /
    • v.15 no.1
    • /
    • pp.38-42
    • /
    • 1989
  • Industrial strain Improvement is concerned with developing or modifying microorga-nisms used In production of commercially important fermentation products. The aim is to reduce the production cost by improving productivity of a strain and manipulating specific cilarafteristic such as the ability to utilize cheaper raw materials or resist bacteriophages. The traditional empiri-cal approach to strain improvement is mutation combined with selection and breeding techniques. It is still used by us to improve the productivity of organisms in amino acids. organic acids andenzymes production. The breeding of high L-lysine-producing strain Au112 is one of the outstanding examples of this approach. It is it homoserine auxotroph with AEC, TA double metabolicanalogue resistant markers. The yield reaches 100g/1. Resides, the citric acid-producing organism Aspergillus nuger, Co827, its productivity reches the advanced level in the world, is also the result of a series mutations expecially with Co Y-radiation. The thermostable a-amylaseroducing strain A 4041 is the third example. By combining physical and chemical multations. the strain ,A 4041becomes an asporogenous, catabolite derepressed mutant with rifamycin resistant and methionine, arginine auxotroph markers. The a-amylase activity reaches 200 units/ml. The fourth successful example of mutation in strain improvement is the glucoamylase-producing strain Aspergillus nigerSP56 its enzyme activity is 20,000 units/ml, 4 times of that of the parental strain UV_11. Recently recombinant DNA approach Provides a worth while alternative strategy to Industrial strain improve-ment. This technique had been used by us to increase the thermostable a-amylase production and on some genetic researches.

  • PDF

Proteomic and Phenotypic Analyses of a Putative YggS Family Pyridoxal Phosphate-Dependent Enzyme in Acidovorax citrulli

  • Lynn Heo;Yongmin Cho;Junhyeok Choi;Jeongwook Lee;Yoobin Han;Sang-Wook Han
    • The Plant Pathology Journal
    • /
    • v.39 no.3
    • /
    • pp.235-244
    • /
    • 2023
  • Acidovorax citrulli (Ac) is a phytopathogenic bacterium that causes bacterial fruit blotch (BFB) in cucurbit crops, including watermelon. However, there are no effective methods to control this disease. YggS family pyridoxal phosphate-dependent enzyme acts as a coenzyme in all transamination reactions, but its function in Ac is poorly understood. Therefore, this study uses proteomic and phenotypic analyses to characterize the functions. The Ac strain lacking the YggS family pyridoxal phosphate-dependent enzyme, AcΔyppAc(EV), virulence was wholly eradicated in geminated seed inoculation and leaf infiltration. AcΔyppAc(EV) propagation was inhibited when exposed to L-homoserine but not pyridoxine. Wild-type and mutant growth were comparable in the liquid media but not in the solid media in the minimal condition. The comparative proteomic analysis revealed that YppAc is primarily involved in cell motility and wall/membrane/envelop biogenesis. In addition, AcΔyppAc(EV) reduced biofilm formation and twitching halo production, indicating that YppAc is involved in various cellular mechanisms and possesses pleiotropic effects. Therefore, this identified protein is a potential target for developing an efficient anti-virulence reagent to control BFB.

Disease-resistant Transgenic Arabidopsis Carrying the expI Gene from Pectobacterium carotovorum subsp. carotovorum SL940

  • Lee, Joo-Hee;Hong, Ja-Bin;Hong, Sang-Bin;Choi, Min-Seon;Jeong, Ki-Yong;Park, Hyoung-Joon;Hwang, Duk-Ju;Lee, Seung-Don;Ra, Dong-Soo;Heu, Sung-Gi
    • The Plant Pathology Journal
    • /
    • v.24 no.2
    • /
    • pp.183-190
    • /
    • 2008
  • Plant-cell-wall-degrading enzymes (PCWDEs) of Pectobacterium carotovorum subsp. carotovorum are the key virulence factor in pathogenesis of soft rot disease of vegetables. The production of PCWDEs is controlled in a cell density dependent manner to avoid the premature production of PCWDEs and subsequent activation of plant defense. N-oxoacyl-homoserine lactone (OHL) is essential for quorum sensing in the soft rot pathogen and the expI gene is responsible for OHL production. The ExpI homolog isolated from P. carotovorum subsp. carotovorum SL940 had 94% identity with ExpI of E. carotovora subsp. carotovora scc3193 and 74% identity with Carl of E. carotovora subsp. atroseptica. The transgenic plants that express exp I uner the control of CaMV35S promoter were able to produce diffusible OHL. Transgenic plants producing OHL were very resistant to the infection of P. carotovorum subsp. carotovorum. Since the PR1 gene was strongly induced and NPR1 and NPR4 were induced weakly in transgenic plants compared to the wild type, salicylic acid-dependent pathways is likely involved in the resistance to the soft rot pathogen P. carotovorum subsp. carotovorum in ExpI transgenic plants.

Investigation of Quorum Sensing-Dependent Gene Expression in Burkholderia gladioli BSR3 through RNA-seq Analyses

  • Kim, Sunyoung;Park, Jungwook;Choi, Okhee;Kim, Jinwoo;Seo, Young-Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1609-1621
    • /
    • 2014
  • The plant pathogen Burkholderia gladioli, which has a broad host range that includes rice and onion, causes bacterial panicle blight and sheath rot. Based on the complete genome sequence of B. gladioli BSR3 isolated from infected rice sheaths, the genome of B. gladioli BSR3 contains the luxI/luxR family of genes. Members of this family encode N-acyl-homoserine lactone (AHL) quorum sensing (QS) signal synthase and the LuxR-family AHL signal receptor, which are similar to B. glumae BGR1. In B. glumae, QS has been shown to play pivotal roles in many bacterial behaviors. In this study, we compared the QS-dependent gene expression between B. gladioli BSR3 and a QS-defective B. gladioli BSR3 mutant in two different culture states (10 and 24 h after incubation, corresponding to an exponential phase and a stationary phase) using RNA sequencing (RNA-seq). RNA-seq analyses including gene ontology and pathway enrichment revealed that the B. gladioli BSR3 QS system regulates genes related to motility, toxin production, and oxalogenesis, which were previously reported in B. glumae. Moreover, the uncharacterized polyketide biosynthesis is activated by QS, which was not detected in B. glumae. Thus, we observed not only common QS-dependent genes between B. glumae BGR1 and B. gladioli BSR3, but also unique QS-dependent genes in B. gladioli BSR3.

Augmenting Plant Immune Responses and Biological Control by Microbial Determinants (새로운 생물적 방제 전략: 미생물 인자 유래 식물면역 유도)

  • Lee, Sang Moo;Chung, Joon-hui;Ryu, Choong-Min
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.161-179
    • /
    • 2015
  • Plant have developed sophisticated defence mechanisms against microbial pathogens. The recent accumulated information allow us to understand the nature of plant immune responses followed by recognition of microbial factors/determinants through cutting-edge genomics and multi-omics techniques. However, the practical approaches to sustain plant health using enhancement of plant immunity is yet to be fully appreciated. Here, we overviewed the general concept and representative examples on the plant immunity. The fungal, bacterial, and viral determinants that was previously reported as the triggers of plant immune responses are introduced and described as the potential protocol of biological control. Specifically, the role of chitin, glucan, lipopolysaccharides/extracellular polysaccharides, microbe/pathogen-associated molecular pattern, antibiotics, mimic-phytohormones, N-acyl homoserine lactone, harpin, vitamins, and volatile organic compounds are considered. We hope that this review stimulates scientific community and farmers to broaden their knowledge on the microbial determinant-based biological control and to apply the technology on the integrated pest management program.

RNAseq-based Transcriptome Analysis of Burkholderia glumae Quorum Sensing

  • Kim, Sunyoung;Park, Jungwook;Kim, Ji Hyeon;Lee, Jongyun;Bang, Bongjun;Hwang, Ingyu;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.29 no.3
    • /
    • pp.249-259
    • /
    • 2013
  • Burkholderia glumae causes rice grain rot and sheath rot by producing toxoflavin, the expression of which is regulated by quorum sensing (QS). The QS systems of B. glumae rely on N-octanoyl homoserine lactone, synthesized by TofI and its cognate receptor TofR, to activate the genes for toxoflavin biosynthesis and an IclR-type transcriptional regulator gene, qsmR. To understand genome-wide transcriptional profiling of QS signaling, we employed RNAseq of the wild-type B. glumae BGR1 with QS-defective mutant, BGS2 (BGR1 tofI::${\Omega}$) and QS-dependent transcriptional regulator mutant, BGS9 (BGR1 qsmR::${\Omega}$). A comparison of gene expression profiling among the wild-type BGR1 and the two mutants before and after QS onset as well as gene ontology (GO) enrichment analysis from differential expressed genes (DEGs) revealed that genes involved in motility were highly enriched in TofI-dependent DEGs, whereas genes for transport and DNA polymerase were highly enriched in QsmR-dependent DEGs. Further, a combination of pathways with these DEGs and phenotype analysis of mutants pointed to a couple of metabolic processes, which are dependent on QS in B. glumae, that were directly or indirectly related with bacterial motility. The consistency of observed bacterial phenotypes with GOs or metabolic pathways in QS-regulated genes implied that integration RNAseq with GO enrichment or pathways would be useful to study bacterial physiology and phenotypes.