DOI QR코드

DOI QR Code

Disease-resistant Transgenic Arabidopsis Carrying the expI Gene from Pectobacterium carotovorum subsp. carotovorum SL940

  • Lee, Joo-Hee (Division of Plant Pathology, National Institute of Agricultural Science and Technology, Rural Development Administration) ;
  • Hong, Ja-Bin (Korean Minjok Leadership Academy) ;
  • Hong, Sang-Bin (Korean Minjok Leadership Academy) ;
  • Choi, Min-Seon (Division of Plant Pathology, National Institute of Agricultural Science and Technology, Rural Development Administration) ;
  • Jeong, Ki-Yong (Division of Plant Pathology, National Institute of Agricultural Science and Technology, Rural Development Administration) ;
  • Park, Hyoung-Joon (Division of Plant Pathology, National Institute of Agricultural Science and Technology, Rural Development Administration) ;
  • Hwang, Duk-Ju (Department of Molecular Physiology and Biochemistry, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Lee, Seung-Don (Division of Plant Pathology, National Institute of Agricultural Science and Technology, Rural Development Administration) ;
  • Ra, Dong-Soo (Division of Plant Pathology, National Institute of Agricultural Science and Technology, Rural Development Administration) ;
  • Heu, Sung-Gi (Division of Plant Pathology, National Institute of Agricultural Science and Technology, Rural Development Administration)
  • Published : 2008.06.30

Abstract

Plant-cell-wall-degrading enzymes (PCWDEs) of Pectobacterium carotovorum subsp. carotovorum are the key virulence factor in pathogenesis of soft rot disease of vegetables. The production of PCWDEs is controlled in a cell density dependent manner to avoid the premature production of PCWDEs and subsequent activation of plant defense. N-oxoacyl-homoserine lactone (OHL) is essential for quorum sensing in the soft rot pathogen and the expI gene is responsible for OHL production. The ExpI homolog isolated from P. carotovorum subsp. carotovorum SL940 had 94% identity with ExpI of E. carotovora subsp. carotovora scc3193 and 74% identity with Carl of E. carotovora subsp. atroseptica. The transgenic plants that express exp I uner the control of CaMV35S promoter were able to produce diffusible OHL. Transgenic plants producing OHL were very resistant to the infection of P. carotovorum subsp. carotovorum. Since the PR1 gene was strongly induced and NPR1 and NPR4 were induced weakly in transgenic plants compared to the wild type, salicylic acid-dependent pathways is likely involved in the resistance to the soft rot pathogen P. carotovorum subsp. carotovorum in ExpI transgenic plants.

Keywords

References

  1. Bainton, N., Bycroft, B., Chhabra, S., Stead, P., Gledhill, L., Hill, P., Rees, C., Winson, M., Salmond, G.., Stewart, G. and Williams, P. 1992. A general role for the lux autoinducer in bacterial cell signaling: control of antibiotic biosynthesis in Erwinia. Gene. 116:87-91. https://doi.org/10.1016/0378-1119(92)90633-Z
  2. Barras, F., van Gijegem, F. and Chatterjee, A. 1994. Extracellular enzymes and pathogenesis of soft-rot Erwinia. Annu. Rev. Phytopathol. 32:201-234. https://doi.org/10.1146/annurev.py.32.090194.001221
  3. Cao, H., Bowling, S., Gordon, A. and Dong, X. 1994. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583-1592. https://doi.org/10.1105/tpc.6.11.1583
  4. Chatterjee, A., Chun, W. and Chatterjee, A. 1990. Isolation and characterization of an rcsA-like gene of Erwinia amylovora that activates extracellular polysaccharide production in Erwinia species, Escherichia coli, and Salmonella typhimurium. Mol. Plant-Microbe Interact. 3:144-148. https://doi.org/10.1094/MPMI-3-144
  5. Clough, S. and Bent, A. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation in Arabidopsis thaliana. Plant J. 16:735-743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
  6. Collmer, A. and Keen, N. 1986. The role of pectic enzymes in plant pathogenesis. Annu. Rev. Phytopathol. 24:383-409. https://doi.org/10.1146/annurev.py.24.090186.002123
  7. Delaney, T., Friedrich, L. and Ryals, J. 1995. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc. Natl, Acad. Sci. USA 95: 6602-6606.
  8. Feys, B. and Parker, J. 2000. Interplay of signaling pathways in plant disease resistance. Trends Genet. 16:449-455. https://doi.org/10.1016/S0168-9525(00)02107-7
  9. Fuqua, W., Winans, S. and Greenberg, E. 1994. Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176:269-275. https://doi.org/10.1128/jb.176.2.269-275.1994
  10. Fuqua, W., Winans, S. and Greenberg, E. 1996. Census and consensus in bacterial ecosystems: The LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu. Rev. Microbiol. 50:727-751. https://doi.org/10.1146/annurev.micro.50.1.727
  11. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166:557-580. https://doi.org/10.1016/S0022-2836(83)80284-8
  12. Ibeas, J., Lee, H., Damsz, B., Prasad, D., Pardo, J., Hasegawa, P., Bressan, R. and Narasimhan, M. 2000. Fungal cell wall phosphomannans facilitate the toxic activity of a plant PR-5 protein. Plant J. 23:375-383. https://doi.org/10.1046/j.1365-313x.2000.00792.x
  13. Jones, S., Yu, B., Bainton, N. J., Birdsall, M., Bycroft, B. W., Chhabra, S., Cox, A. J. R., Colby, P., Reeves, P. J., Stephens, S., Winson, M. K., Salmond G. P. C., Stewart, S. A. B. and Williams, P. 1993. The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. EMBO J. 12:2477-2482.
  14. Kaplan, H. and Greenberg, E. 1985. Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J. Bacteriol. 163:1210-1214.
  15. Kinkema M., Fan W. and Dong X. 2000. Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12:2339-2350. https://doi.org/10.1105/tpc.12.12.2339
  16. Kunkel, B. N. and Brooks, D. 2002. Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 5:325-331. https://doi.org/10.1016/S1369-5266(02)00275-3
  17. Liu, G., Holub, E. B., Alonso, J. M., Ecker, J. R. and Fobert, P. R. 2005. An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance. Plant J. 41:304-318. https://doi.org/10.1111/j.1365-313X.2004.02296.x
  18. Mae, A., Montesano, M., Koiv, V. and Palva, E. T. 2001. Transgenic plants producing the bacterial pheromone N-acylhomoserin lactone exhibit enhanced resistance to the bacterial phytopathogen Erwinia carotovora. Mol. Plant-Microbe Interact. 14:1035-1042. https://doi.org/10.1094/MPMI.2001.14.9.1035
  19. Matthew, R. Parsek, Amy, L. Schaefer and Greenberg, E. P. 1997. Analysis of random and site-directed mutations in rhlI, a Pseudomonas aeruginosa gene encoding an acylhomoserine lactone synthase. Mol. Microbiology 26:301-310. https://doi.org/10.1046/j.1365-2958.1997.5741935.x
  20. Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, U.S.A.
  21. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15:473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  22. Niderman, T., Genetet, I., Bruyere, T., Gees, R., Stintzi, A., Legrand, M., Fritig, B. and Mosinger, E. 1995. Pathogenesisrelated PR-1 proteins are antifungal. Isolation and characterization of three 14-kilodalton proteins of tomato and of a basis PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiol. 108:17-27. https://doi.org/10.1104/pp.108.1.17
  23. Norman, C., Vidal, S. and Palva, E. T. 1999. Oligogalacturonidemediated induction of a gene involved in jasmonic acid synthesis in response to the cell-wall-degrading enzymes of the plant pathogen Erwinia carotovora. Mol. Plant-Microbe Interact. 12:640-644. https://doi.org/10.1094/MPMI.1999.12.7.640
  24. Norman-Setterbald, C., Vidal, S. and Palva, E. T. 2000. Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from E. carotovora subsp. carotovora. Mol. Plant-Microbe Interact 13:430-438. https://doi.org/10.1094/MPMI.2000.13.4.430
  25. Pierson, L. S., III, Wood, D. W. and Pierson, E. A. 1998. Homoserine lactone-mediated gene regulation in plant-associated bacteria. Annu. Rev. Phytopathol. 36:207-235. https://doi.org/10.1146/annurev.phyto.36.1.207
  26. Pirhonen, M., Flego, K., Heikingeimo, R. and Palva, E. T. 1993. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J. 12:2467-2476.
  27. Salmond G. P., Bycroft B.W., Stewart G. S. and Williams P. 1995. The bacterial 'enigma': cracking the code of cell-cell communication. Mol. Microbiol. 16:615-624. https://doi.org/10.1111/j.1365-2958.1995.tb02424.x
  28. Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning: A laboratory manual, 2nd ed. Cold spring harbor laboratory press, Cold spring harbor, NY, U.S.A.
  29. Shah, J., Tsui, F. and Klessig, D. F. 1997. Characterization of a salicylic acid-insensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol. Plant-Microbe Interact. 10: 69-78. https://doi.org/10.1094/MPMI.1997.10.1.69
  30. Swift, S., Throup, J. P., Williams, P., Salmond, G. P. C. and Stewart, G. S. A. B. 1996. Quorum sensing: A population-density component in the determination of bacterial phenotype. Trends Biochem. Sci. 21:214-219. https://doi.org/10.1016/S0968-0004(96)80018-1
  31. Teresa, R. and Barabara, H. 2000. Bacterial quorum sensing in pathogenic relationships. Infect. Immun. 68:4839-4849. https://doi.org/10.1128/IAI.68.9.4839-4849.2000
  32. Thomma, B. P. H. J., Penninckx, I. A. M. A., Cammue, B. P. A. and Broekaert, W. F. 2001. The complexity of disease signaling in Arabidopsis. Curr. Opin. Immunol. 13:63-68. https://doi.org/10.1016/S0952-7915(00)00183-7
  33. Vidal, S., Ponce de Leon, L. and Palva, E. T. 1997. Salicylic acid and the plant pathogen Erwinia carotovora induce defense via antagonistic pathways. Plant J. 11:115-123. https://doi.org/10.1046/j.1365-313X.1997.11010115.x
  34. Vidal, S., Eriksson, A. R. B., Montesano, M., Demecke, J. and Palva, E. T. 1998. Cell wall-degrading enzymes from Erwinia carotovora cooperate in the salicylic acid-independent induction of a plant defense response. . Mol. Plant-Microbe Interact 11:23-32. https://doi.org/10.1094/MPMI.1998.11.1.23
  35. Von Bodman, S. B. and Farrand, S. K. 1995. Capsular polysaccharide biosynthesis and pathogenicity in Erwinia stewartii require induction by N-acyl-homoserine lactone autoinducer. J. Bacteriol. 177:5000-5008. https://doi.org/10.1128/jb.177.17.5000-5008.1995
  36. Zimmerli, L., Stein, M., Lipka, V., Schulze-Lefert, P. and Somerville, S. 2004. Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis. Plant J. 40:633-646. https://doi.org/10.1111/j.1365-313X.2004.02236.x

Cited by

  1. AtMYB44 Positively Regulates the Enhanced Elongation of Primary Roots Induced by N-3-Oxo-Hexanoyl-Homoserine Lactone in Arabidopsis thaliana vol.29, pp.10, 2016, https://doi.org/10.1094/MPMI-03-16-0063-R
  2. Identification of AtWRKY75 as a transcriptional regulator in the defense response to Pcc through the screening of Arabidopsis activation-tagged lines vol.8, pp.2, 2014, https://doi.org/10.1007/s11816-013-0308-x
  3. Genetic Diversity of Pectobacterium carotovorum subsp. brasiliensis Isolated in Korea vol.30, pp.2, 2014, https://doi.org/10.5423/PPJ.OA.12.2013.0117