• Title/Summary/Keyword: Homomorphic Encryption Algorithm

Search Result 13, Processing Time 0.025 seconds

A Survey of Homomorphic Encryption for Outsourced Big Data Computation

  • Fun, Tan Soo;Samsudin, Azman
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3826-3851
    • /
    • 2016
  • With traditional data storage solutions becoming too expensive and cumbersome to support Big Data processing, enterprises are now starting to outsource their data requirements to third parties, such as cloud service providers. However, this outsourced initiative introduces a number of security and privacy concerns. In this paper, homomorphic encryption is suggested as a mechanism to protect the confidentiality and privacy of outsourced data, while at the same time allowing third parties to perform computation on encrypted data. This paper also discusses the challenges of Big Data processing protection and highlights its differences from traditional data protection. Existing works on homomorphic encryption are technically reviewed and compared in terms of their encryption scheme, homomorphism classification, algorithm design, noise management, and security assumption. Finally, this paper discusses the current implementation, challenges, and future direction towards a practical homomorphic encryption scheme for securing outsourced Big Data computation.

Cloud-based Full Homomorphic Encryption Algorithm by Gene Matching

  • Pingping Li;Feng Zhang
    • Journal of Information Processing Systems
    • /
    • v.20 no.4
    • /
    • pp.432-441
    • /
    • 2024
  • To improve the security of gene information and the accuracy of matching, this paper designs a homomorphic encryption algorithm for gene matching based on cloud computing environment. Firstly, the gene sequences of cloud files entered by users are collected, which are converted into binary code by binary function, so that the encrypted text is obviously different from the original text. After that, the binary code of genes in the database is compared with the generated code to complete gene matching. Experimental analysis indicates that when the number of fragments in a 1 GB gene file is 65, the minimum encryption time of the algorithm is 80.13 ms. Aside from that, the gene matching time and energy consumption of this algorithm are the least, which are 85.69 ms and 237.89 J, respectively.

Query with SUM Aggregate Function on Encrypted Floating-Point Numbers in Cloud

  • Zhu, Taipeng;Zou, Xianxia;Pan, Jiuhui
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.573-589
    • /
    • 2017
  • Cloud computing is an attractive solution that can provide low cost storage and powerful processing capabilities for government agencies or enterprises of small and medium size. Yet the confidentiality of information should be considered by any organization migrating to cloud, which makes the research on relational database system based on encryption schemes to preserve the integrity and confidentiality of data in cloud be an interesting subject. So far there have been various solutions for realizing SQL queries on encrypted data in cloud without decryption in advance, where generally homomorphic encryption algorithm is applied to support queries with aggregate functions or numerical computation. But the existing homomorphic encryption algorithms cannot encrypt floating-point numbers. So in this paper, we present a mechanism to enable the trusted party to encrypt the floating-points by homomorphic encryption algorithm and partial trusty server to perform summation on their ciphertexts without revealing the data itself. In the first step, we encode floating-point numbers to hide the decimal points and the positive or negative signs. Then, the codes of floating-point numbers are encrypted by homomorphic encryption algorithm and stored as sequences in cloud. Finally, we use the data structure of DoubleListTree to implement the aggregate function of SUM and later do some extra processes to accomplish the summation.

Technical Trend of Fully Homomorphic Encryption (완전동형암호 기술의 연구 동향)

  • Jeong, Myoung In
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.8
    • /
    • pp.36-43
    • /
    • 2013
  • Fully homomorphic encryption is a cryptography system in which coded data can be searched and statistically processed without decryption. Fully homomorphic encryption has accelerated searching speed by minimizing time spent on encryption and decryption. In addition, it is also known to prevent leakage of any data decoded for statistical reasons. Also, it is expected to protect personal information stored in the cloud computing environment which is becoming commercialized. Since the 1970s when fully homomorphic encryption was first introduced, it has been researched to develop the algorithm that satisfy effectiveness and functionality. We will take the reader through a journey of these developments and provide a glimpse of the exciting research directions that lie ahead.

Iris Ciphertext Authentication System Based on Fully Homomorphic Encryption

  • Song, Xinxia;Chen, Zhigang;Sun, Dechao
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.599-611
    • /
    • 2020
  • With the application and promotion of biometric technology, biometrics has become more and more important to identity authentication. In order to ensure the privacy of the user, the biometrics cannot be stored or manipulated in plaintext. Aiming at this problem, this paper analyzes and summarizes the scheme and performance of the existing biometric authentication system, and proposes an iris-based ciphertext authentication system based on fully homomorphic encryption using the FV scheme. The implementation of the system is partly powered by Microsoft's SEAL (Simple Encrypted Arithmetic Library). The entire system can complete iris authentication without decrypting the iris feature template, and the database stores the homomorphic ciphertext of the iris feature template. Thus, there is no need to worry about the leakage of the iris feature template. At the same time, the system does not require a trusted center for authentication, and the authentication is completed on the server side directly using the one-time MAC authentication method. Tests have shown that when the system adopts an iris algorithm with a low depth of calculation circuit such as the Hamming distance comparison algorithm, it has good performance, which basically meets the requirements of real application scenarios.

A Study on Data Collection Protocol with Homomorphic Encryption Algorithm (동형 암호의 데이터 수집 프로토콜 적용 방안 연구)

  • Lee, Jongdeog;Jeong, Myoungin;Yoo, Jincheol
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.9
    • /
    • pp.42-50
    • /
    • 2021
  • As the Internet environment develops, data-analysis-based applications have been widely and extensively used in the past decade. However, these applications potentially have a privacy problem in that users' personal information may be leaked to unauthorized parties. To tackle such a problem, researchers have suggested several techniques including data perturbation and cryptography. The homomorphic encryption algorithm is a relatively new cryptography technology that allows arithmetic operations for encrypted values as it is without decryption. Since original values are not required, we believe that this method provides better privacy protection than other existing solutions. In this work, we propose to apply a homomorphic encryption algorithm that protects personal information while enabling data analysis.

Performance Analysis for Privacy-preserving Data Collection Protocols (개인정보보호를 위한 데이터 수집 프로토콜의 성능 분석)

  • Lee, Jongdeog;Jeong, Myoungin;Yoo, Jincheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1904-1913
    • /
    • 2021
  • With the proliferation of smart phones and the development of IoT technology, it has become possible to collect personal data for public purposes. However, users are afraid of voluntarily providing their private data due to privacy issues. To remedy this problem, mainly three techniques have been studied: data disturbance, traditional encryption, and homomorphic encryption. In this work, we perform simulations to compare them in terms of accuracy, message length, and computation delay. Experiment results show that the data disturbance method is fast and inaccurate while the traditional encryption method is accurate and slow. Similar to traditional encryption algorithms, the homomorphic encryption algorithm is relatively effective in privacy preserving because it allows computing encrypted data without decryption, but it requires high computation costs as well. However, its main cost, arithmetic operations, can be processed in parallel. Also, data analysis using the homomorphic encryption needs to do decryption only once at any number of data.

Memory saving architecture of number theoretic transform for lattice cryptography (동형 암호 시스템을 위한 정수 푸리에 변환의 메모리 절약 구조)

  • Moon, Sangook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.762-763
    • /
    • 2016
  • In realizing a homomorphic encryption system, the operations of encrypt, decypt, and recrypt constitute major portions. The most important common operation for each back-bone operations include a polynomial modulo multiplication for over million-bit integers, which can be obtained by performing integer Fourier transform, also known as number theoretic transform. In this paper, we adopt and modify an algorithm for calculating big integer multiplications introduced by Schonhage-Strassen to propose an efficient algorithm which can save memory. The proposed architecture of number theoretic transform has been implemented on an FPGA and evaluated.

  • PDF

Comparison of encryption algorithm performance between low-spec IoT devices (저 사양 IoT 장치간의 암호화 알고리즘 성능 비교)

  • Park, Jung Kyu;Kim, Jaeho
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.1
    • /
    • pp.79-85
    • /
    • 2022
  • Internet of Things (IoT) connects devices with various platforms, computing power, and functions. Due to the diversity of networks and the ubiquity of IoT devices, demands for security and privacy are increasing. Therefore, cryptographic mechanisms must be strong enough to meet these increased requirements, while at the same time effective enough to be implemented in devices with long-range specifications. In this paper, we present the performance and memory limitations of modern cryptographic primitives and schemes for different types of devices that can be used in IoT. In addition, detailed performance evaluation of the performance of the most commonly used encryption algorithms in low-spec devices frequently used in IoT networks is performed. To provide data protection, the binary ring uses encryption asymmetric fully homomorphic encryption and symmetric encryption AES 128-bit. As a result of the experiment, it can be seen that the IoT device had sufficient performance to implement a symmetric encryption, but the performance deteriorated in the asymmetric encryption implementation.

Secure Training Support Vector Machine with Partial Sensitive Part

  • Park, Saerom
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • In this paper, we propose a training algorithm of support vector machine (SVM) with a sensitive variable. Although machine learning models enable automatic decision making in the real world applications, regulations prohibit sensitive information from being used to protect privacy. In particular, the privacy protection of the legally protected attributes such as race, gender, and disability is compulsory. We present an efficient least square SVM (LSSVM) training algorithm using a fully homomorphic encryption (FHE) to protect a partial sensitive attribute. Our framework posits that data owner has both non-sensitive attributes and a sensitive attribute while machine learning service provider (MLSP) can get non-sensitive attributes and an encrypted sensitive attribute. As a result, data owner can obtain the encrypted model parameters without exposing their sensitive information to MLSP. In the inference phase, both non-sensitive attributes and a sensitive attribute are encrypted, and all computations should be conducted on encrypted domain. Through the experiments on real data, we identify that our proposed method enables to implement privacy-preserving sensitive LSSVM with FHE that has comparable performance with the original LSSVM algorithm. In addition, we demonstrate that the efficient sensitive LSSVM with FHE significantly improves the computational cost with a small degradation of performance.