KSII Transactions on Internet and Information Systems (TIIS)
/
제10권8호
/
pp.3826-3851
/
2016
With traditional data storage solutions becoming too expensive and cumbersome to support Big Data processing, enterprises are now starting to outsource their data requirements to third parties, such as cloud service providers. However, this outsourced initiative introduces a number of security and privacy concerns. In this paper, homomorphic encryption is suggested as a mechanism to protect the confidentiality and privacy of outsourced data, while at the same time allowing third parties to perform computation on encrypted data. This paper also discusses the challenges of Big Data processing protection and highlights its differences from traditional data protection. Existing works on homomorphic encryption are technically reviewed and compared in terms of their encryption scheme, homomorphism classification, algorithm design, noise management, and security assumption. Finally, this paper discusses the current implementation, challenges, and future direction towards a practical homomorphic encryption scheme for securing outsourced Big Data computation.
To improve the security of gene information and the accuracy of matching, this paper designs a homomorphic encryption algorithm for gene matching based on cloud computing environment. Firstly, the gene sequences of cloud files entered by users are collected, which are converted into binary code by binary function, so that the encrypted text is obviously different from the original text. After that, the binary code of genes in the database is compared with the generated code to complete gene matching. Experimental analysis indicates that when the number of fragments in a 1 GB gene file is 65, the minimum encryption time of the algorithm is 80.13 ms. Aside from that, the gene matching time and energy consumption of this algorithm are the least, which are 85.69 ms and 237.89 J, respectively.
Cloud computing is an attractive solution that can provide low cost storage and powerful processing capabilities for government agencies or enterprises of small and medium size. Yet the confidentiality of information should be considered by any organization migrating to cloud, which makes the research on relational database system based on encryption schemes to preserve the integrity and confidentiality of data in cloud be an interesting subject. So far there have been various solutions for realizing SQL queries on encrypted data in cloud without decryption in advance, where generally homomorphic encryption algorithm is applied to support queries with aggregate functions or numerical computation. But the existing homomorphic encryption algorithms cannot encrypt floating-point numbers. So in this paper, we present a mechanism to enable the trusted party to encrypt the floating-points by homomorphic encryption algorithm and partial trusty server to perform summation on their ciphertexts without revealing the data itself. In the first step, we encode floating-point numbers to hide the decimal points and the positive or negative signs. Then, the codes of floating-point numbers are encrypted by homomorphic encryption algorithm and stored as sequences in cloud. Finally, we use the data structure of DoubleListTree to implement the aggregate function of SUM and later do some extra processes to accomplish the summation.
완전동형암호는 암호화된 자료를 복호화 하는 과정을 거치지 않고 원하는 자료를 검색 및 통계처리 할 수 있도록 하는 암호기반 기술이다. 완전동형암호는 암호화 및 복호화에 소요되는 시간을 줄여줌으로써 검색 속도를 향상시키고 통계 처리를 위해 복호화 된 자료의 유출로 인한 피해를 막을 수 있는 기술로 주목받고 있다. 또한 최근 보편화 되고 있는 클라우드 컴퓨팅 환경에서 개인 정보가 외부의 저장 공간에 저장됨으로써 발생할 수 있는 여러 가지 문제점을 해결해 줄 것으로 기대를 모으고 있다. 완전동형암호가 처음 제안된 70년대 이후 지금까지 효율성과 기능성을 만족시키는 알고리즘을 개발하기 위한 연구가 계속되어 왔다. 본 고에서는 최근 활발한 연구가 진행되고 있는 완전동형암호의 연구 방향에 대해서 살펴보고자 한다.
With the application and promotion of biometric technology, biometrics has become more and more important to identity authentication. In order to ensure the privacy of the user, the biometrics cannot be stored or manipulated in plaintext. Aiming at this problem, this paper analyzes and summarizes the scheme and performance of the existing biometric authentication system, and proposes an iris-based ciphertext authentication system based on fully homomorphic encryption using the FV scheme. The implementation of the system is partly powered by Microsoft's SEAL (Simple Encrypted Arithmetic Library). The entire system can complete iris authentication without decrypting the iris feature template, and the database stores the homomorphic ciphertext of the iris feature template. Thus, there is no need to worry about the leakage of the iris feature template. At the same time, the system does not require a trusted center for authentication, and the authentication is completed on the server side directly using the one-time MAC authentication method. Tests have shown that when the system adopts an iris algorithm with a low depth of calculation circuit such as the Hamming distance comparison algorithm, it has good performance, which basically meets the requirements of real application scenarios.
인터넷 사용 환경이 발전함에 따라 스마트폰과 각종 센서로부터 발생하는 대량의 데이터를 수집 및 분석하여 활용하는 데이터 기반 애플리케이션의 사용은 지난 10여 년간 폭발적으로 증가하였다. 그러나 이러한 사용자 데이터 기반의 애플리케이션을 사용하는 것은 언제든지 개인정보가 승인되지 않은 제3자에게 유출될 수 있다는 문제점을 내재하고 있다. 이러한 문제를 해결하기 위해 학자들은 데이터 교란과 암호화를 포함한 여러 기법을 사용해 왔다. 동형 암호는 암호화된 데이터를 복호화과정 없이 그대로 연산하더라도 결괏값이 보존되므로 원하는 연산을 수행할 때 개별 데이터를 복호화할 필요가 없어 기존의 방식보다 더 나은 개인정보보호를 제공한다. 본 연구에서는 개인정보를 보호하기 위해 사용되는 두 가지 알고리즘인 데이터 교란 방식과 전통 암호 방식 알고리즘을 구분하여 살펴보고, 두 가지 알고리즘의 단점을 보완할 수 있는 동형 암호를 이용한 데이터 수집 방법을 제안한다.
스마트폰의 대중화와 IoT 기술의 발달로 데이터 수집이 쉬워지며 공익을 위해 이를 분석하는 것이 가능해졌지만, 개인정보 유출의 가능성으로 인해 다수의 사용자는 자발적으로 데이터를 제공하는 것에 우려를 표한다. 이러한 문제해결을 위해 개인정보를 보호하면서 데이터 수집을 가능하게 하는 프로토콜에 관하여 연구하였다. 본 연구에서는 자료 교란, 전통 암호, 그리고 동형암호를 이용한 알고리즘들의 성능에 대해 분석하였으며 정확도, 메시지 길이, 그리고 계산 지연시간의 3가지 단위를 이용하여 비교 분석하였다. 실험 결과를 통해 자료 교란 방식은 연산 속도가 빠르고 정확도는 낮으며, 반면에 전통 암호 알고리즘은 효율성이 떨어지지만 100%의 정확도를 보장한다는 점을 확인하였다. 동형 암호 알고리즘은 암호화된 데이터에 대해 복호화 없이 연산을 수행하는 방식이므로 상대적으로 개인정보보호에 효과적이지만, 높은 비용이 발생하였다. 그러나 동형 암호 알고리즘의 주요 비용인 사칙연산은 분산 처리하여 비용을 낮출 수 있으며, 통계수치 분석과 같은 연산은 데이터 개수와 상관없이 복호화가 단 한 번만 수행된다는 장점을 확인하였다.
동형 암호화 시스템을 구현하는 데 있어, encrypt, decrypt, recrypt 연산은 큰 골격을 이루는 연산이다. 각각에 있어 공통된 가장 중요한 연산은 백만 비트가 넘는 큰 정수에 대한 법 곱셈이며, 이것은 푸리에 변환을 반복적으로 수행하여 얻을 수 있는 매우 큰 정수에 대한 곱셈 연산과 곱셈 결과에 대한 법 간소화를 요구한다. 본 논문에서는 Schonhage-Strassen이 제안한 큰 정수에 대한 법 곱셈을 수행하는 알고리즘을 응용하여, 이를 다시 메모리를 절약할 수 있는 효율적인 알고리즘을 제안하고 구현한다. 제안한 정수 푸리에 변환 구조는 FPGA에 구현하여 성능을 비교하였다.
사물인터넷(IoT)은 다양한 플랫폼, 컴퓨팅 성능, 기능을 가지는 장치를 연결한다. 네트워크의 다양성과 IoT 장치의 편재로 인해 보안 및 개인 정보 보호에 대한 요구가 증가하고 있다. 따라서 암호화 메커니즘은 이러한 증가된 요구 사항을 충족할 만큼 충분히 강력해야 하고 동시에 저 사양의 장치에 구현될 수 있을 만큼 충분히 효과적이어야 한다. 논문에서는 IoT에서 사용할 수 있는 다양한 유형의 장치에 대한 최신 암호화 기본 요소 및 체계의 성능 및 메모리 제한 사항을 제시한다. 또한, IoT 네트워크에 자주 사용되는 저 사양의 장치에서 가장 일반적으로 사용되는 암호화 알고리즘의 성능에 대한 자세한 성능 평가를 수행한다. 데이터 보호 기능을 제공하기 위해 바이너리 링에서 암호화 비대칭 완전 동형 암호화와 대칭 암호화 AES 128비트를 사용했다. 실험 결과 IoT 장치는 대칭 암호를 구현하는데 충분한 성능을 가지고 있었으나 비대칭 암호 구현에서는 성능이 저하되는 것을 알 수 있다.
본 연구에서는 민감 정보가 포함된 경우의 서포트 벡터 머신 (SVM) 학습 알고리즘을 제안한다. 기계 학습 모형들이 실세계의 자동화된 의사 결정을 가능하게 하였지만 규제들은 프라이버시 보호를 위해서 민감 정보들의 활용을 제한하고 있다. 특히 인종, 성별, 장애 여부와 같은 법적으로 보호되는 정보들의 프라이버시 보호는 필수이다. 본 연구에서는 완전 동형암호를 활용하여 부분적인 민감 정보가 포함된 경우에 최소 제곱 SVM (LSSVM) 모형을 효율적으로 학습할 수 있는 방법을 제안한다. 본 프레임워크에서는 데이터 소유주가 민감하지 않은 정보와 민감한 정보 모두를 가지고 있고, 이를 기계학습 서비스 제공자에게 제공할 때에 민감 정보만 암호화해서 제공하는 것을 가정한다. 결과적으로 데이터 소유자는 민감 정보를 노출시키지 않으면서도 암호화된 상태로 모형의 학습 정보를 얻을 수 있다. 모형을 실제 활용할 경우에는 모든 정보를 암호화하여 안전하게 예측 결과를 제공할 수 있도록 한다. 실제 데이터에 대한 실험을 통해 본 알고리즘이 동형암호로 구현될 경우에 원래의 LSSVM 모형과 비슷한 성능을 가질 수 있음을 확인해 볼 수 있었다. 또한, 개선된 효율적인 알고리즘에 대한 실험은 적은 성능 저하로 큰 연산 효율성을 달성할 가능성을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.