• Title/Summary/Keyword: Homogenization model

Search Result 145, Processing Time 0.023 seconds

Applying Response Surface Methodology to Predict the Homogenization Efficiency of Milk (우유 균질 조건 예측을 위한 반응표면방법론의 활용)

  • Sungsue Rheem;Sejong Oh
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • Response surface methodology (RSM) is a statistical approach widely used in food processing to optimize the formulation, processing conditions, and quality of food products. The homogenization process is achieved by subjecting milk to high pressure, which breaks down fat globules and disperses fat more evenly throughout milk. This study focuses on an application of RSM including the logit transformation to predict the efficiency of milk homogenization, which can be maximized by minimizing the relative difference in fat percentage between the top part and the remainder of milk. To avoid a negative predicted value of the minimum of this proportion, the logit transformation is used to turn the proportion into the logit, whose possible values are real numbers. Then, the logit values are modeled and optimized. Subsequently, the logistic transformation is used to turn the predicted logit into the predicted proportion. From our model, the optimum condition for the maximized efficiency of milk homogenization was predicted as the combination of a homogenizer pressure of 30 MPa, a storage temperature of 10℃, and a storage period of 10 days. Additionally, with a combination of a homogenizer pressure of 30 MPa, a storage temperature of 10℃, and a storage period of 50 days, the level of milk homogenization was predicted to be acceptable, even with the problem of extrapolation taken into account.

PWR core calculation based on pin-cell homogenization in three-dimensional pin-by-pin geometry

  • Bin Zhang;Yunzhao Li;Hongchun Wu;Wenbo Zhao;Chao Fang;Zhaohu Gong;Qing Li;Xiaoming Chai;Junchong Yu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.1950-1958
    • /
    • 2024
  • For the pressurized water reactor two-step calculation, the traditional assembly homogenization and two-group neutron diffusion calculation have been widely used. When it comes to the core pin-by-pin simulation, many models and techniques are different and unsettled. In this paper, the homogenization methods based on the pin discontinuity factors and super homogenization factors are used to get the pin-cell homogenized parameters. The heterogeneous leakage model is applied to modify the infinite flux spectrum of the single assembly with reflective boundary condition and to determine the diffusion coefficients for the SP3 solver which is used in the core simulation. To reduce the environment effect of the single-assembly reflective boundary condition, the online method for the SPH factors updating is applied in this paper, and the functionalization of SPH factors based on the least-squares method will be pre-made alone with the table of the group constants. The fitting function will be used to update the thermal-group SPH factors with a whole-core pin-by-pin homogeneous solution online. The three-dimensional Watts Bar Nuclear Unit 1 (WBN1) problem was utilized to test the performance of pin-by-pin calculation. And numerical results have demonstrated that PWR pin-by-pin core calculation has more accurate results compared with the traditional assembly-homogenization scheme.

Disinfection Models to Predict Inactivation of Artemia sp. via Physicochemical Treatment Processes (물리·화학적 처리공정을 이용한 Artemia sp. 불활성화 예측을 위한 소독 모델)

  • Zheng, Chang;Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.26 no.4
    • /
    • pp.421-432
    • /
    • 2017
  • In this study, we examined the suitability of ten disinfection models for predicting the inactivation of Artemia sp. via single or combined physical and chemical treatments. The effect of Hydraulic Retention Time (HRT) on the inactivation of Artemia sp. was examined experimentally. Disinfection models were fitted to the experimental data by using the GInaFiT plug-in for Microsoft Excel. The inactivation model were evaluated on the basis of RMSE (Root Mean Square Error), SSE (mean Sum Square Error) and $r^2$. An inactivation model with the lowest RMSE, SSE and $r^2$ close to 1 was considered the best. The Weibull+Tail model was found to be the most appropriate for predicting the inactivation of Artemia sp. via electrolytic treatment and electrolytic-ultrasonic combined treatment. The Log-linear+Tail model was the most appropriate for modeling inactivation via homogenization and combined electrolytic-homogenization treatment. The double Weibull disinfection model was the most suitable for the predicting inactivation via ultrasonic treatment.

Analysis of quasi-brittle materials at mesoscopic level using homogenization model

  • Borges, Dannilo C;Pituba, Jose J C
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.221-240
    • /
    • 2017
  • The modeling of the mechanical behavior of quasi-brittle materials is still a challenge task, mainly in failure processes when fracture and plasticity phenomena become important actors in dissipative processes which occur in materials like concrete, as instance. Many homogenization-based approaches have been proposed to deal with heterogeneous materials in the last years. In this context, a computational homogenization modeling for concrete is presented in this work using the concept of Representative Volume Element (RVE). The material is considered as a three-phase material consisting of interface zone (ITZ), matrix and inclusions-each constituent modeled by an independent constitutive model. The Representative Volume Element (RVE) consists of inclusions idealized as circular shapes symmetrically and nonsymmetrically placed into the specimen. The interface zone is modeled by means of cohesive contact finite elements. The inclusion is modeled as linear elastic and matrix region is considered as elastoplastic material. A set of examples is presented in order to show the potentialities and limitations of the proposed modeling. The consideration of the fracture processes in the ITZ is fundamental to capture complex macroscopic characteristics of the material using simple constitutive models at mesoscopic level.

Use of homogenization theory to build a beam element with thermo-mechanical microscale properties

  • Schrefler, B.A.;Lefik, M.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.613-630
    • /
    • 1996
  • The homogenization method is used to develop a beam element in space for thermo-mechanical analysis of unidirectional composites. Local stress and temperature field in the microscale are described using the function of homogenization. The global (macroscopic) behaviour of the structure is supposed to be that of a beam. Beam-type kinematical hypotheses (including independent shear rotations) are hence applied and superposed on the microdescription. A macroscopic stiffness matrix for such a beam element is then developed which contains the microscale properties of the single cell of periodicity. The presented model enables us to analyse without too much computational effort complicated composite structures such as e.g. toroidal coils of a fusion reactor. We need only a FE mesh sufficiently fine for a correct description of the local geometry of a single cell and a few of the newly developed elements for the description of the global behaviour. An unsmearing procedure gives the stress and temperature field in the different materials of a single cell.

Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme

  • Ebrahimi, Farzad;Dabbagh, Ali;Rabczuk, Timon;Tornabene, Francesco
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.135-143
    • /
    • 2019
  • The important effect of porosity on the mechanical behaviors of a continua makes it necessary to account for such an effect while analyzing a structure. motivated by this fact, a new two-step porosity dependent homogenization scheme is presented in this article to investigate the wave propagation responses of functionally graded (FG) porous nanobeams. In the introduced homogenization method, which is a modified form of the power-law model, the effects of porosity distributions are considered. Based on Hamilton's principle, the Navier equations are developed using the Euler-Bernoulli beam model. Thereafter, the constitutive equations are obtained employing the nonlocal elasticity theory of Eringen. Next, the governing equations are solved in order to reach the wave frequency. Once the validity of presented methodology is proved, a set of parametric studies are adapted to put emphasis on the role of each variant on the wave dispersion behaviors of porous FG nanobeams.

Enthalpy - based homogenization procedure for composite piezoelectric modules with integrated electrodes

  • Kranz, Burkhard;Benjeddou, Ayech;Drossel, Welf-Guntram
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.579-594
    • /
    • 2013
  • A new enthalpy - based procedure for the homogenization of the electromechanical material parameters of composite piezoelectric modules with integrated electrodes is presented. It is based on a finite element (FE) modeling of the latter's representative volume element (RVE). In contrast to most previously published homogenization approaches that are based on averaged quantities, the presented method uses a direct evaluation of the electromechanical enthalpy. Hence, for the linear orthotropic piezoelectric composite behavior full set of elastic, piezoelectric, and dielectric material parameters, 17 load cases (LC) are used where each load case leads directly to one material parameter. This gives the possibility to elaborate a very strict and easy to program processing. In conjunction with the 17 LC, the enthalpy - based homogenization is particularly suitable for laminated composite piezoelectric modules with integrated electrodes. In this case, the electric load has to be given at the electrodes rather than at the RVE FE model boundaries. The proposed procedure is validated through its comparison to literature available results on a classical 1-3 piezoelectric micro fiber (longitudinally polarized) reinforced composite and a $d_{15}$ shear piezoelectric macro-fiber (transversely polarized) composite module.

Multilevel Homogenization-Based Framework for Effective Analysis of Structures with Complex Regularity (복합 규칙성을 가진 구조물의 효과적인 해석을 위한 다단계 균질화기반 해석 프레임워크)

  • Youngjae Jeon;Wanjae Jang;Seongmin Chang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.19-26
    • /
    • 2023
  • Because of the development of computational resources, an entire structure in which many components are combined can be analyzed. To do so, the calculation time and number of data points are increased. In many practical industry structures, there are many parts with repeated patterns. To analyze the repetitive structures effectively, a homogenization method is usually employed. In a homogenization module, including commercial programs, it is generally assumed that a unit cell is repeated in all directions. However, the practical industry structures usually have complicated, repeated patterns or structures. Complicated patterns are difficult to address using the conventional homogenization method. Therefore, in this study, a multilevel homogenization method was devised to consider complex regularities. The proposed homogenization method divides the structure into several areas and performs multiple homogenizations, resulting in a more accurate analysis than that provided by the previous method.

A Data-driven Multiscale Analysis for Hyperelastic Composite Materials Based on the Mean-field Homogenization Method (초탄성 복합재의 평균장 균질화 데이터 기반 멀티스케일 해석)

  • Suhan Kim;Wonjoo Lee;Hyunseong Shin
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.329-334
    • /
    • 2023
  • The classical multiscale finite element (FE2 ) method involves iterative calculations of micro-boundary value problems for representative volume elements at every integration point in macro scale, making it a computationally time and data storage space. To overcome this, we developed the data-driven multiscale analysis method based on the mean-field homogenization (MFH). Data-driven computational mechanics (DDCM) analysis is a model-free approach that directly utilizes strain-stress datasets. For performing multiscale analysis, we efficiently construct a strain-stress database for the microstructure of composite materials using mean-field homogenization and conduct data-driven computational mechanics simulations based on this database. In this paper, we apply the developed multiscale analysis framework to an example, confirming the results of data-driven computational mechanics simulations considering the microstructure of a hyperelastic composite material. Therefore, the application of data-driven computational mechanics approach in multiscale analysis can be applied to various materials and structures, opening up new possibilities for multiscale analysis research and applications.

A micromechanics-based time-domain viscoelastic constitutive model for particulate composites: Theory and experimental validation

  • You, Hangil;Lim, Hyoung Jun;Yun, Gun Jin
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.3
    • /
    • pp.217-242
    • /
    • 2022
  • This paper proposes a novel time-domain homogenization model combining the viscoelastic constitutive law with Eshelby's inclusion theory-based micromechanics model to predict the mechanical behavior of the particle reinforced composite material. The proposed model is intuitive and straightforward capable of predicting composites' viscoelastic behavior in the time domain. The isotropization technique for non-uniform stress-strain fields and incremental Mori-Tanaka schemes for high volume fraction are adopted in this study. Effects of the imperfectly bonded interphase layer on the viscoelastic behavior on the dynamic mechanical behavior are also investigated. The proposed model is verified by the direct numerical simulation and DMA (dynamic mechanical analysis) experimental results. The proposed model is useful for multiscale analysis of viscoelastic composite materials, and it can also be extended to predict the nonlinear viscoelastic response of composite materials.