• 제목/요약/키워드: Homogeneous deformation

Search Result 185, Processing Time 0.025 seconds

A Study on the Deformation Modulus for Tunnel Displacement Assessment in Multi-Jointed Rock Mass (다중절리 암반지층에서의 터널변위 산정을 위한 변형계수에 관한 연구)

  • Son, Moorak;Lee, Wonki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.5
    • /
    • pp.17-26
    • /
    • 2017
  • Tunnel excavation in jointed rock mass induces a displacement along tunnel excavation line and its assessment is very important to ensure the stability of tunnel and a demanded space. Tunnel displacement is directly related to the deformation modulus of ground and therefore it is essential to know the value of the parameter. However, most rock masses where tunnels are constructed are generally jointed and it is difficult to find out the deformation modulus of jointed rock mass simply based on an homogeneous isotropic elastic medium because the deformation modulus is highly affected by joint condition as well as rock type. Accordingly, this study carried out extensive numerical parametric studies to examine the variation of deformation modulus in different joint conditions and rock types under the condition of tunnel excavation. The study results were compared with existing empirical relationships and also shown in the chart of deformation modulus variation in different jointed rock mass conditions.

Nanocrystallization of Metallic Powders during High Pressure Torsion Processing (금속분말의 고압비틀림 성형시 나노결정화)

  • Yoon, Seung-Chae;Kim, Hyoung-Seop
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.105-106
    • /
    • 2007
  • Microstructure and hardness of metallic powder of Cu was studied after high pressure torsion (HPT) with 10 torsions and high pressure of 6 GPa. The size Cu grain decreases drastically after HPT and reaches the nano size range. During HPT, Cu powder increases hardness and Hall-Petch hardening, due to the decreasing grain size. In this study, effect of HPT on the hardness of Cu powders and consolidation with Nanocrystalline of the work reported here. The results indicated that Cu powder has a beneficial effect on homogeneous deformation, reducing grain size.

  • PDF

A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates

  • Nguyen, Kien T.;Thai, Tai H.;Vo, Thuc P.
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.91-120
    • /
    • 2015
  • A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates is presented in this paper. It contains only four unknowns, accounts for a hyperbolic distribution of transverse shear stress and satisfies the traction free boundary conditions. Equations of motion are derived from Hamilton's principle. The Navier-type and finite element solutions are derived for plate with simply-supported and various boundary conditions, respectively. Numerical examples are presented for functionally graded sandwich plates with homogeneous hardcore and softcore to verify the validity of the developed theory. It is observed that the present theory with four unknowns predicts the response accurately and efficiently.

특집: 미래주도형 성형공정과 수치 해석기술 - 비정질 합금 온간 성형 공정에서의 미세 조직 연계 해석 기술

  • Lee, Gwang-Seok;Jeon, Hyeon-Jun
    • 기계와재료
    • /
    • v.23 no.3
    • /
    • pp.16-29
    • /
    • 2011
  • 결정 합금 대비 비정질 합금은 높은 경도를 갖기 때문에 마모 저항성도 좋고 내부 식성 등 환경에 대한 저항성도 월등하며, 또한 과냉된 액상 상태까지 재가열하게 되면 낮은 점성도를 갖게 되므로 복잡한 3차원적인 형상을 가지는 부품을 환경에 대한 저항성, 피로 저항성, 강도 및 경도 등을 모두 고려하여 높은 정밀도를 가지고 제조하는 것이 가능하므로 우수한 물성을 갖는 구조 및 기능성 재료로의 다양한 응용이 타진되고 있다. 이러한 비정질 합금의 변형 거동에 대한 연구는 대부분 유리 천이 온도 이하에서의 전단 및 파단에 이르는 이른바 불균일 변형(Inhomogeneous Deformation) 거동에 대한 이해를 위한 실험 및 해석적 연구에 집중되어 왔다. 반면 상업화의 기반이 되는 고상 기반 2차 정형 성형은 과냉 액상 영역에서의 구조 완화 및 결정화롤 대표되는 미세 구조 제어 균일 변형(Homogeneous Deformation)에 대한 이해 없이는 불가능하므로, 이러한 관점에서 비정질 합금 특유의 점성 유동 특성을 이용한 균일 변형 응용 예시 및 미세구조 변화 연계 해석 기술의 현황을 소개하고자 한다.

  • PDF

Thermo-mechanical bending response with stretching effect of functionally graded sandwich plates using a novel shear deformation theory

  • Saidi, Hayat;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bedia, El Abbas Adda
    • Steel and Composite Structures
    • /
    • v.15 no.2
    • /
    • pp.221-245
    • /
    • 2013
  • This paper presents an analytical solution to the thermomechanical bending analysis of functionally graded sandwich plates by using a new hyperbolic shear deformation theory in which the stretching effect is included. The modulus of elasticity of plates is assumed to vary according to a power law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic ceramic material. The effects of functionally graded material (FGM) layer thickness, volume fraction index, layer thickness ratio, thickness ratio and aspect ratio on the deflections and stresses of functionally graded sandwich plates are investigated.

Thermomechanical deformation in porous generalized thermoelastic body with variable material properties

  • Kumar, Rajneesh;Devi, Savita
    • Structural Engineering and Mechanics
    • /
    • v.34 no.3
    • /
    • pp.285-300
    • /
    • 2010
  • The two-dimensional deformation of a homogeneous, isotropic thermoelastic half-space with voids with variable modulus of elasticity and thermal conductivity subjected to thermomechanical boundary conditions has been investigated. The formulation is applied to the coupled theory(CT) as well as generalized theories: Lord and Shulman theory with one relaxation time(LS), Green and Lindsay theory with two relaxation times(GL) Chandrasekharaiah and Tzou theory with dual phase lag(C-T) of thermoelasticity. The Laplace and Fourier transforms techniques are used to solve the problem. As an application, concentrated/uniformly distributed mechanical or thermal sources have been considered to illustrate the utility of the approach. The integral transforms have been inverted by using a numerical inversion technique to obtain the components of displacement, stress, changes in volume fraction field and temperature distribution in the physical domain. The effect of dependence of modulus of elasticity on the components of stress, changes in volume fraction field and temperature distribution are illustrated graphically for a specific model. Different special cases are also deduced.

Free vibration of a steel-concrete composite beam with coupled longitudinal and bending motions

  • Li, Jun;Jiang, Li;Li, Xiaobin
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.79-91
    • /
    • 2017
  • Free vibrations of steel-concrete composite beams are analyzed by using the dynamic stiffness approach. The coupled equations of motion of the composite beams are derived with help of the Hamilton's principle. The effects of the shear deformation and rotary inertia of the two beams as well as the transverse and axial deformations of the stud connectors are included in the formulation. The dynamic stiffness matrix is developed on the basis of the exact general solutions of the homogeneous governing differential equations of the composite beams. The use of the dynamic stiffness method to determine the natural frequencies and mode shapes of a particular steel-concrete composite beam with various boundary conditions is demonstrated. The accuracy and effectiveness of the present model and formulation are validated by comparison of the present results with the available solutions in literature.

Characterizing buckling behavior of matrix-cracked hybrid plates containing CNTR-FG layers

  • Lei, Zuxiang;Zhang, Yang
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.495-508
    • /
    • 2018
  • In this paper, the effect of matrix cracks on the buckling of a hybrid laminated plate is investigated. The plate is composed of carbon nanotube reinforced functionally graded (CNTR-FG) layers and conventional fiber reinforced composite (FRC) layers. Different distributions of single walled carbon nanotubes (SWCNTs) through the thickness of layers are considered. The cracks are modeled as aligned slit cracks across the ply thickness and transverse to the laminate plane, and the distribution of cracks is assumed statistically homogeneous corresponding to an average crack density. The first-order shear deformation theory (FSDT) is employed to incorporate the effects of rotary inertia and transverse shear deformation, and the meshless kp-Ritz method is used to obtain the buckling solutions. Detailed parametric studies are conducted to investigate the effects of matrix crack density, CNTs distributions, CNT volume fraction, plate aspect ratio and plate length-to-thickness ratio, boundary conditions and number of layers on buckling behaviors of hybrid laminated plates containing CNTR-FG layers.

Finite Element Analysis of Extrusion Process in Semi-Solid State (반용융 재료의 압출공정에 관한 유한요소 해석)

  • Hwang, Jae-Ho;Go, Dae-Cheol;Min, Gyu-Sik;Kim, Byeong-Min;Choe, Jae-Chan
    • Transactions of Materials Processing
    • /
    • v.7 no.4
    • /
    • pp.364-374
    • /
    • 1998
  • It is the objective of this study to analyze the effect of various process variables on the quality of extruded product and extrusion force for semi-solid extrusion of Al2024 with solid phase structure of globular type by the finite element method. Process variables are initial solid fraction, ram speed, semi-angle of die, and reduction in area. The results of experiment are compared with those of simulation in order to verify the usefulness of the developed finite element program. The flow and deformation of semi-solid alloy are analyzed by coupling by coupling the deformation of porous skeleton and the flow of liquid phase. It is also assumed that initial solid fraction is homogeneous.

  • PDF

Nanocrystallization of Metallic Powders during High Pressure Torsion Processing (금속분말의 고압비틀림 성형시 나노결정화)

  • Yoon, Seung-Chae;Kwak, Eun-Jeong;Kim, Taek-Soo;Hong, Sun-Ig;Kim, Hyoung-Seop
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.360-363
    • /
    • 2007
  • Microstructure and microhardness of metallic powders of pure copper were studied after high pressure torsion(HPT) processing with 10 turns of die rotation and high pressure of 6 GPa. The grain size of copper decreases drastically after HPT and reaches nanometer size ranges. During HPT, the hardness of consolidates of copper powders increases with increasing the temperature of HPT processing. Examinations of the fracture surfaces indicated evidence of ductile fracture. The results proved that HPT of copper powders has a beneficial effect for homogeneous deformation with reducing grain size.