• Title/Summary/Keyword: Homogeneous Model

Search Result 980, Processing Time 0.026 seconds

Comparison of Analysis Results According to Heterogeneous or Homogeneous Model for CT-based Focused Ultrasound Simulation (CT 영상 기반 집속 초음파 시뮬레이션 모델의 불균질 물성과 균질 물성에 따른 모델 분석 결과 비교)

  • Hyeon, Seo;Eun-Hee, Lee
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.369-374
    • /
    • 2022
  • Purpose: Focused ultrasound is an emerging technology for treating the brain locally in a noninvasive manner. In this study, we have investigated the influence of skull properties on simulating transcranial pressure field. Methods: A 3D computational model of transcranial focused ultrasound was constructed using female and male CT data to solve for intracranial pressure. For heterogeneous model, the acoustic properties were calculated from CT Hounsfield units based on a porosity. The homogeneous model assigned constant acoustic properties for the single-layered skull. Results: A computational model was validated against empirical data. The homogeneous models were then compared with the heterogeneous model, resulted in 10.87% and 7.19% differences in peak pressure for female and male models respectively. For the focal volume, homogeneous model demonstrated more than 94% overlap compared with the heterogeneous model. Conclusion: Homogeneous model can be constructed using MR images that are commonly used for the segmentation of the skull. We propose the possibility of the homogeneous model for the simulating transcranial pressure field owing to comparable focal volume between homogeneous model and heterogeneous model.

The Likelihood for a Two-Dimensional Poisson Exceedance Point Process Model

  • Yun, Seok-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.5
    • /
    • pp.793-798
    • /
    • 2008
  • Extreme value inference deals with fitting the generalized extreme value distribution model and the generalized Pareto distribution model, which are recently combined to give a single model, namely a two-dimensional non-homogeneous Poisson exceedance point process model. In this paper, we extend the two-dimensional non-homogeneous Poisson process model to include non-stationary effect or dependence on covariates and then derive the likelihood for the extended model.

Prediction of Emissions and Knocking in a Homogeneous GDI Engine by Quasidimensional model (유사차원해석을 이용한 균일혼합기 GDI 엔진에서의 배기 및 노킹 예측)

  • Lee, Jaeseo;Huh, Kang Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.107-109
    • /
    • 2012
  • A quasidimensional model is developed with the surrogate mechanism of isooctane and n-heptane to predict knock and emissions of a homogeneous GDI engine. It is composed of unburned and burned zone with the latter divided into multiple zones of equal mass to resolve temperature stratification. Validation is performed against measured pressure traces, NOx and CO emissions at different load and rpm conditions. Comparison is made between the empirical knock model and predictions by the chemistry model in this work.

  • PDF

The prediction of the critical factor of safety of homogeneous finite slopes subjected to earthquake forces using neural networks and multiple regressions

  • Erzin, Yusuf;Cetin, T.
    • Geomechanics and Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • In this study, artificial neural network (ANN) and multiple regression (MR) models were developed to predict the critical factor of safety ($F_s$) of the homogeneous finite slopes subjected to earthquake forces. To achieve this, the values of $F_s$ in 5184 nos. of homogeneous finite slopes having different slope, soil and earthquake parameters were calculated by using the Simplified Bishop method and the minimum (critical) $F_s$ for each of the case was determined and used in the development of the ANN and MR models. The results obtained from both the models were compared with those obtained from the calculations. It is found that the ANN model exhibits more reliable predictions than the MR model. Moreover, several performance indices such as the determination coefficient, variance account for, mean absolute error, root mean square error, and the scaled percent error were computed. Also, the receiver operating curves were drawn, and the areas under the curves (AUC) were calculated to assess the prediction capacity of the ANN and MR models developed. The performance level attained in the ANN model shows that the ANN model developed can be used for predicting the critical $F_s$ of the homogeneous finite slopes subjected to earthquake forces.

Volume Haptic Rendering Algorithm for Realistic Modeling (실감형 모델링을 위한 볼륨 햅틱 렌더링 알고리즘)

  • Jung, Ji-Chan;Park, Joon-Young
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.2
    • /
    • pp.136-143
    • /
    • 2010
  • Realistic Modeling is to maximize the reality of the environment in which perception is made by virtual environment or remote control using two or more senses of human. Especially, the field of haptic rendering, which provides reality through interaction of visual and tactual sense in realistic model, has brought attention. Haptic rendering calculates the force caused by model deformation during interaction with a virtual model and returns it to the user. Deformable model in the haptic rendering has more complexity than a rigid body because the deformation is calculated inside as well as the outside the model. For this model, Gibson suggested the 3D ChainMail algorithm using volumetric data. However, in case of the deformable model with non-homogeneous materials, there were some discordances between visual and tactual sense information when calculating the force-feedback in real time. Therefore, we propose an algorithm for the Volume Haptic Rendering of non-homogeneous deformable object that reflects the force-feedback consistently in real time, depending on visual information (the amount of deformation), without any post-processing.

Effect of Compression Ratio on the Combustion Characteristics of a Thermodynamics-Based Homogeneous Charge Compression Ignition Engine

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.61-66
    • /
    • 2015
  • Homogeneous charge compression ignition (HCCI) engine combines the combustion characteristics of a compression ignition engine and a spark ignition engine. HCCI engines take advantage of the high compression ratio and heat release rate and thus exhibit high efficiency found in compression ignition engines. In modern research, simulation has be come a powerful tool as it saves time and also economical when compared to experimental study. Engine simulation has been developed to predict the performance of a homogeneous charge compression ignition engine. The effects of compression ratio, cylinder pressure, rate of pressure rise, flame temperature, rate of heat release, and mass fraction burned were simulated. The simulation and analysis show several meaningful results. The objective of the present study is to develop a combustion characteristics model for a homogeneous charge compression ignition engine running with isooctane as a fuel and effect of compression ratio.

Quasidimensional Simulation with Multi-zone Combustion Model for Homogeneous GDI Engine Emissions and Knocking (균일혼합기 가솔린 직분사 엔진의 다중 영역 유사차원 해석을 통한 배기 및 노킹 예측)

  • Lee, Jaeseo;Huh, Kang Y.;Kwon, Hyuckmo;Park, Jae In
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • A quasidimensional program is developed for a four stroke cycle homogeneous GDI (Gasoline Direct Injection) engine. It includes models for spray, burning rate and chemistry to predict knock and emissions. With early injection a homogeneous GDI engine goes through spark ignited, turbulent premixed combustion as in PFI (Port Fuel Injection) engines. The cylinder charge is divided into unburned and burned zone with the latter divided into multiple zones of equal mass to resolve temperature stratification. Validation is performed against measured pressure traces, NOx and CO emissions at different load and RPM conditions. Comparison is made between an empirical knock model and predictions by the chemistry model in this work.

Study of viscoelastic model for harmonic waves in non-homogeneous viscoelastic filaments

  • Kakar, Rajneesh;Kaur, Kanwaljeet;Gupta, Kishan Chand
    • Interaction and multiscale mechanics
    • /
    • v.6 no.1
    • /
    • pp.31-50
    • /
    • 2013
  • A five parameter viscoelastic model is developed to study harmonic waves propagating in the non-homogeneous viscoelastic filaments of varying density. The constitutive relation for five parameter model is first developed and then it is applied for harmonic waves in the specimen. In this study, it is assumed that density, rigidity and viscosity of the specimen i.e., rod are space dependent. The specimen is non-homogeneous, initially unstressed and at rest. The method of non-linear partial differential equation has been used for finding the dispersion equation of harmonic waves in the rods. A simple method is presented for reflections at the free end of the finite non-homogeneous viscoelastic rods. The harmonic wave propagation in viscoelastic rod is also presented numerically with MATLAB.

HOMOGENEOUS SUBMERSIONS OF 3-DIMENSIONAL GEOMETRIES

  • Lee, Kyung-Bai;Park, Joon-Sang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.1101-1129
    • /
    • 2012
  • We study the geometry of the images of 1-dimensional homogeneous submersions for each of the model spaces X of the eight 3-dimensional geometries. In particular, We shall calculate the group of isometries and the curvatures of the base surfaces for each of the model spaces of 3-dimensional geometries, with respect to every closed subgroup of the isometries of X acting freely.

A Stochastic Model of Muscle Fatigue in Cyclic Heavy Exertions$\cdots$Formulation

  • Lee, Myun-W.;Pollock, Stephen M.;Chaffin, Don B.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.5 no.2
    • /
    • pp.21-36
    • /
    • 1979
  • Static muscle contractions when prolonged or frequently repeated result in discomfort, fatigue, and musculosketal injuries. An analytic and quantitative model has been developed in order to expand the working knowledge on muscle fatigue. In this paper, three Markov models of muscle fatigue are developed. These models are based on motor unit fatigue-recovery characteristics obtained from information on motor unit behavior as it relates to fatigue and graded exertions. Three successively more realistic models are developed that involve: (1) homogeneous motor units with intensity-dependent fatigue rates and state-independent recovery rates (the HMSI model); (2) homogeneous motor units, intensity-dependent fatigue rates and state-dependent recovery rates (the HMSD model); and (3) non-homogeneous motor units (i.e., Type S and Type F), intensity-dependent fatigue rates and state-dependent recovery rates (the HMSD model). The result indicate that a simple stochastic model provide a means to analyze the complex nature of muscle fatigue in sequential static exertions.

  • PDF