• Title/Summary/Keyword: Home Energy System

Search Result 297, Processing Time 0.028 seconds

Analytic Study on the Design Elements for Energy Conservative Green-Home Prototyping (에너지 저감형 그린홈 프로토타이핑을 위한 설계요소 분석 연구)

  • Kim, Jung-Eun;Chang, Seong-Ju;Ha, Mi-Kyoung;Sung, Hae-Yoen;Kim, Kyung-Wan
    • KIEAE Journal
    • /
    • v.11 no.4
    • /
    • pp.63-70
    • /
    • 2011
  • In respond to the global energy crisis and climate change, there have been many ongoing national efforts to develop a sustainable housing prototype followed by "2 million Green Home Project" in Korea. More than 50% of nation's population are currently living in apartment housing thus the country is seriously in need of developing green apartment prototype. In this research, we focused on energy-conservative green apartment design prototype that have both passive components and active systems explored in a systemic design approach. After selecting an existing basic apartment unit, we analyzed and compared statistical data with the simulated annual energy consumption to match these two data sets for validating simulation accuracy performed with TRNSYS package. We performed energy simulations with different passive design factors such as varied insulation thickness, window types and infiltration rates as well as the active design factors including boilers and lighting fixtures to analyze their impacts on the energy performance of the housing unit using TRNSYS software. As a result, we acquired significant energy reduction effect with explored design strategies but the life cycle cost analysis for the final design guidline would need to be performed. In this study, we focused on a systematic comparative energy analysis based on TRNSYS that can improve the design of a green apartment housing.

A Comparative Study on the Assessment Items of Korea's Apartment Building Certification Systems (국내 공동주택 관련 인증제도의 세부 항목에 대한 비교 분석에 관한 연구)

  • Jung, Ji-Na;Tae, Choon-Seob;Yang, Jeong-Hoon;Park, Sang-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.116-123
    • /
    • 2010
  • A various building certification systems are being enforced in Korea. However, the enforcement of many building certification systems has brought on the concerned people's confusion and the operation of various building certification systems which have similar assesment items causes much time and economical losses. Therefore, in this paper, the features of the GBCS(Green Building Certification System), Housing Performance Indication System, Building Energy Rating System, and Green Home Standard and Performance Evaluation System are compared and the correlations among each building certification system are analysed. As a result, it is presented that a considerable number of assessment items were so similar and identical that integration of building certification systems is needed for effective operation of these systems.

A Study for Space-based Energy Management System to Minimizing Power Consumption in the Big Data Environments (소비전력 최소화를 위한 빅데이터 환경에서의 공간기반 에너지 관리 시스템에 관한 연구)

  • Lee, Yong-Soo;Heo, Jun;Choi, Yong-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.229-235
    • /
    • 2013
  • This paper proposed the method to reduce and manage the amount of using power by using the Self-Learning of inference engine that evolves through learning increasingly smart ways for each spaces with in the Space-Based Energy Management System (SEMS, Space-based Energy Management System) that is defined as smallest unit space with constant size and similar characteristics by using the collectible Big Data from the various information networks and the informations of various sensors from the existing Energy Management System(EMS), mostly including such as the Energy Management Systems for the Factory (FEMS, Factory Energy Management System), the Energy Management Systems for Buildings (BEMS, Building Energy Management System), and Energy Management Systems for Residential (HEMS, Home Energy Management System), that is monitoring and controlling the power of systems through various sensors and administrators by measuring the temperature and illumination.

A small power plant in each household (가정의 작은 발전소 연료전지)

  • Sin, Tae-Seob
    • Journal of the Korean Professional Engineers Association
    • /
    • v.44 no.3
    • /
    • pp.25-29
    • /
    • 2011
  • The fuel cell, a renewable energy facility, hasn t come into wide use to the public. However, the usefulness of it is so high through Supply Business called Green Home, general auxiliary Supply Business, obligation to supply renewable energy for public organizations, Building Certification System and compulsory quota of using renewable energy to power generating businesses, etc. Intial installation was supported by government and a local autonomous entities in case of home fuel cell. Cost-benefits of installing it in home are approximately from $1,000 to $2,500. As Korea applies a progressive tax scheme in home electricity, energy costs are associated with electricity consumption. We should contemplate ways to make effective use of additional waste heat because technology of fuel cell is kind of a cogeneration.

  • PDF

Design of Neuro-Fuzzy based Intelligent Inference Algorithm for Energy Management System with Legacy Device (비절전 가전기기를 위한 에너지 관리 시스템의 뉴로-퍼지 기반 지능형 추론 알고리즘 설계)

  • Choi, In-Hwan;Yoo, Sung-Hyun;Jung, Jun-Ho;Lim, Myo-Taeg;Oh, Jung-Jun;Song, Moon-Kyou;Ahn, Choon-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.779-785
    • /
    • 2015
  • Recently, home energy management system (HEMS) for power consumption reduction has been widely used and studied. The HEMS performs electric power consumption control for the indoor electric device connected to the HEMS. However, a traditional HEMS is used for passive control method using some particular power saving devices. Disadvantages with this traditional HEMS is that these power saving devices should be newly installed to build HEMS environment instead of existing home appliances. Therefore, an HEMS, which performs with existing home appliances, is needed to prevent additional expenses due to the purchase of state-of-the-art devices. In this paper, an intelligent inference algorithm for EMS at home for non-power saving electronic equipment, called legacy devices, is proposed. The algorithm is based on the adaptive network fuzzy inference system (ANFIS) and has a subsystem that notifies retraining schedule to the ANFIS to increase the inference performance. This paper discusses the overview and the architecture of the system, especially in terms of the retraining schedule. In addition, the comparison results show that the proposed algorithm is more accurate than the classic ANFIS-based EMS system.

Power Consumption Pattern Analysis of Home Appliances for DC-based Green Smart Home

  • Seo, Gab-Su;Baek, Jong-Bok;Bak, Chul-Woo;Bae, Hyun-Su;Cho, Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.240-241
    • /
    • 2010
  • Research on modification and replacement of conventional AC distribution system to DC distribution system has been widely conducted. When DC system is applied, it is possible to improve energy transferring efficiency because most of the home appliances are electric loads which require DC input voltage. Furthermore, compatibility with renewable energy sources and secondary batteries should be improved as they are DC based power sources. To design energy efficient DC system, it is important to understand the load characteristics of the electric devices. In this paper, the electric appliances are classified to 3 types: motor, heating, and electric loads and their typical power consumptions are shown. Load patterns of load which can be used in analyzing the designed system are modeled according the statistics. Feasibility of the developed load patterns are verified by applying it in distribution system design tool.

  • PDF

Smart Home Service System Considering Indoor and Outdoor Environment and User Behavior (실내외 환경과 사용자의 행동을 고려한 스마트 홈 서비스 시스템)

  • Kim, Jae-Jung;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.5
    • /
    • pp.473-480
    • /
    • 2019
  • The smart home is a technology that can monitor and control by connecting everything to a communication network in various fields such as home appliances, energy consumers, and security devices. The Smart home is developing not only automatic control but also learning situation and user's taste and providing the result accordingly. This paper proposes a model that can provide a comfortable indoor environment control service for the user's characteristics by detecting the user's behavior as well as the automatic remote control service. The whole system consists of ESP 8266 with sensor and Wi-Fi, Firebase as a real-time database, and a smartphone application. This model is divided into functions such as learning mode when the home appliance is operated, learning control through learning results, and automatic ventilation using indoor and outdoor sensor values. The study used moving averages for temperature and humidity in the control of home appliances such as air conditioners, humidifiers and air purifiers. This system can provide higher quality service by analyzing and predicting user's characteristics through various machine learning and deep learning.

A Study on ESS-based Clean Energy, Smart Home IoT Platform (ESS기반 클린에너지, 스마트홈 IoT 플랫폼 연구)

  • Kim, Hee-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.147-152
    • /
    • 2018
  • This study investigates the demand management and energy saving plan of the apartment house based on the ESS (: Energy Storage System), which is the main equipment in the field of electric power energy efficiency, and suggests standardization for various technical factors and operation. It contributes to the spread of ESS industry. In addition, to create ESS market for apartment houses and smart homes, housing IoT technology is used to integrate apartment houses with smart home-based ESS and it is possible to achieve use efficiency and economic feasibility of power users, We will study a business model that can reconsider the acceptability of power users.

A Location-based Green Home Service using a Smart Phone (스마트폰을 활용한 위치 기반 그린 홈 서비스)

  • Choi, Jin-Yeop;Jeon, Byoung-Chan;Lee, Sang-Jeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.89-97
    • /
    • 2012
  • In recent years, efficient energy management technologies are required, as environmental problems have emerged worldwide. In response to this, smart home services focused on efficient energy management technology seems to be emerging. And the integration of technology of user-oriented real-time energy monitoring and control systems is required. In this paper, we present a location-based green home service using smart phones for efficient energy management in a house. We design a green home network system to apply the green home service, and implement an integrated gateway system which connects and controls each appliance in a house. We develop appliance control services and indoor location services on smart phones, and determine whether user's occupancy of each room by measuring the location according to the variation of signal strength. In order to evaluate the performance of the energy savings, we have set up the scenarios of energy usage pattern and have compared the energy variation resulting from the application of the indoor location services with smart meters. A comparison of energy usage demonstrated that the energy saving of a house with the proposed location-based green home service was down up to 30%.

Web Based Smart Home Automation Control System Design

  • Hwang, Eui-Chul
    • International Journal of Contents
    • /
    • v.11 no.4
    • /
    • pp.70-76
    • /
    • 2015
  • The development of technology provides and increases security as well as convenience for humans. The development of new technology directly affects the standard of life thanks to smart home automatic control systems. This paper describes a door control, automatic curtain, home security (CCTV, fire, gas, safe, etc.), home control (energy, light, ventilation, etc.) and web-based smart home automatic controller. It also describes the use of ARM (Advanced RISC Machines) for automatic control of home equipment, a Multi-Axes Servo Controller using FPGA (Field Programmable Gate Array) and PLC (programmable logic controller). Additionally, it describes the development of a HTML editor using web auto control software. The tab loading time (7 seconds) is faster when using ARM-based web browser software instead of Chrome and Firefox is used because the browser has a small memory footprint (300M). This system is realized by web auto controller language which controls and uses PLCs that are easier than existing devices. This smart home automatic control technology can control smart home equipment anywhere and anytime and provides a remote interface through mobile equipment.