• Title/Summary/Keyword: Holt Winters

Search Result 32, Processing Time 0.024 seconds

Hourly electricity demand forecasting based on innovations state space exponential smoothing models (이노베이션 상태공간 지수평활 모형을 이용한 시간별 전력 수요의 예측)

  • Won, Dayoung;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.581-594
    • /
    • 2016
  • We introduce innovations state space exponential smoothing models (ISS-ESM) that can analyze time series with multiple seasonal patterns. Especially, in order to control complex structure existing in the multiple patterns, the model equations use a matrix consisting of seasonal updating parameters. It enables us to group the seasonal parameters according to their similarity. Because of the grouped parameters, we can accomplish the principle of parsimony. Further, the ISS-ESM can potentially accommodate any number of multiple seasonal patterns. The models are applied to predict electricity demand in Korea that is observed on hourly basis, and we compare their performance with that of the traditional exponential smoothing methods. It is observed that the ISS-ESM are superior to the traditional methods in terms of the prediction and the interpretability of seasonal patterns.

The methods of forecasting for the number of student based on promotion proportion (학년진급률에 따른 학생수 예측방법)

  • Kim, Jong-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.5
    • /
    • pp.857-867
    • /
    • 2009
  • The purpose of this paper is to suggest the methods of forecasting for the number of the elementary, middle and high-school student based on the proportion of promotion until 2026 year. The suggested methods are the proportion of promotion, mov baseverage, Holt-W bters model, SARIMA, regression fit. As the result, the abilities of forecasting by the method of moving average are better than those of other methods.

  • PDF

Predictive analysis of the Number of Cataract Surgeries (백내장 수술건수 추이예측 분석)

  • Jeong, Ji-Yun;Jeong, Jae-Yeon;Lee, Hae-Jong
    • Korea Journal of Hospital Management
    • /
    • v.25 no.2
    • /
    • pp.69-75
    • /
    • 2020
  • Purposes: This study aims to investigate the number of cataract surgeries and predict future trends using 13-year data. Methodology: Trends investigation and comparison of prediction methods was conducted to determine better prediction model using Major Surgery Statistics from Korean Statistical Information Service in 2006-2018. ARIMA(Auto Regressive Integrated Moving Average) was selected and prediction was conducted using R program. Findings: As a results, the number of surgeries will continue to increase. The trends was predicted to increase during January-April, and it declined over time and was the lowest in August. Pratical Implications: Therefore, it is necessary that management will be needed by continuously investigating and predicting the demand and trend for surgery to prepare an alternative to the increase.

Long-Term Forecasting by Wavelet-Based Filter Bank Selections and Its Application

  • Lee, Jeong-Ran;Lee, You-Lim;Oh, Hee-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.2
    • /
    • pp.249-261
    • /
    • 2010
  • Long-term forecasting of seasonal time series is critical in many applications such as planning business strategies and resolving possible problems of a business company. Unlike the traditional approach that depends solely on dynamic models, Li and Hinich (2002) introduced a combination of stochastic dynamic modeling with filter bank approach for forecasting seasonal patterns using highly coherent(High-C) waveforms. We modify the filter selection and forecasting procedure on wavelet domain to be more feasible and compare the resulting predictor with one that obtained from the wavelet variance estimation method. An improvement over other seasonal pattern extraction and forecasting methods based on such as wavelet scalogram, Holt-Winters, and seasonal autoregressive integrated moving average(SARIMA) is shown in terms of the prediction error. The performance of the proposed method is illustrated by a simulation study and an application to the real stock price data.

Short-term Electric Load Forecasting Based on Wavelet Transform and GMDH

  • Koo, Bon-Gil;Lee, Heung-Seok;Park, Juneho
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.832-837
    • /
    • 2015
  • The group method of data handling (GMDH) algorithm has proven to be a powerful and effective way to extract rules or polynomials from an electric load pattern. However, because it is nonstationary, the load pattern needs to be decomposed using a discrete wavelet transform. In addition, if a load pattern has a complicated curve pattern, GMDH should use a higher polynomial, which requires complex computing and consumes a lot of time. This paper suggests a method for short-term electric load forecasting that uses a wavelet transform and a GMDH algorithm. Case studies with the proposed algorithm were carried out for one-day-ahead forecasting of hourly electric loads using data during the years 2008-2011. To prove the effectiveness of our proposed approach, the results were evaluated and compared with those obtained by Holt-Winters method and artificial neural network. Our suggested method resulted in better performance than either comparison group.

Short-term Electric Load Forecasting using temperature data in Summer Season (기온데이터를 이용한 하계 단기 전력수요예측)

  • Koo, Bon-gil;Lee, Heung-Seok;Lee, Sang-wook;Lee, Hwa-Seok;Park, Juneho
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.300-301
    • /
    • 2015
  • Accurate and robust load forecasting model plays very important role in power system operation. In case of short-term electric load forecasting, its results offer standard to decide a price of electricity and also can be used shaving peak. For this reason, various models have been developed to improve accuracy of load forecasting. This paper proposes a newly forecasting model for weather sensitive season including temperature and Cooling Degree Hour(C.D.H) data as an input. This Forecasting model consists of previous electric load and preprocessed temperature, constant, parameter. It optimizes load forecasting model to fit actual load by PSO and results are compared to Holt-Winters and Artificial Neural Network. Proposing method shows better performance than comparison groups.

  • PDF

Suggesting Forecasting Methods for Dietitians at University Foodservice Operations

  • Ryu Ki-Sang
    • Nutritional Sciences
    • /
    • v.9 no.3
    • /
    • pp.201-211
    • /
    • 2006
  • The purpose of this study was to provide dietitians with the guidance in forecasting meal counts for a university/college foodservice facility. The forecasting methods to be analyzed were the following: naive model 1, 2, and 3; moving average, double moving average, simple exponential smoothing, double exponential smoothing, Holt's, and Winters' methods, and simple linear regression. The accuracy of the forecasting methods was measured using mean squared error and Theil's U-statistic. This study showed how to project meal counts using 10 forecasting methods for dietitians. The results of this study showed that WES was the most accurate forecasting method, followed by $na\ddot{i}ve$ 2 and naive 3 models. However, naive model 2 and 3 were recommended for using by dietitians in university/college dining facilities because of the accuracy and ease of use. In addition, the 2000 spring semester data were better than the 2000 fall semester data to forecast 2001spring semester data.

A study on solar energy forecasting based on time series models (시계열 모형과 기상변수를 활용한 태양광 발전량 예측 연구)

  • Lee, Keunho;Son, Heung-gu;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.1
    • /
    • pp.139-153
    • /
    • 2018
  • This paper investigates solar power forecasting based on several time series models. First, we consider weather variables that influence forecasting procedures as well as compare forecasting accuracies between time series models such as ARIMAX, Holt-Winters and Artificial Neural Network (ANN) models. The results show that ten models forecasting 24hour data have better performance than single models for 24 hours.

Prediction of Sales on Some Large-Scale Retailing Types in South Korea

  • Jeong, Dong-Bin
    • Asian Journal of Business Environment
    • /
    • v.7 no.4
    • /
    • pp.35-41
    • /
    • 2017
  • Purpose - This paper aims to examine several time series models to predict sales of department stores and discount store markets in South Korea, while other previous trial has performed sales of convenience stores and supermarkets. In addition, optimal predicted values on the underlying model can be got and be applied to distribution industry. Research design, data, and methodology - Two retailing types, under investigation, are homogeneous and comparable in size based on 86 realizations sampled from January 2010 to February in 2017. To accomplish the purpose of this research, both ARIMA model and exponential smoothing methods are, simultaneously, utilized. Furthermore, model-fit measures may be exploited as important tools of the optimal model-building. Results - By applying Holt-Winters' additive seasonality method to sales of two large-scale retailing types, persisting increasing trend and fluctuation around the constant level with seasonal pattern, respectively, will be predicted from May in 2017 to February in 2018. Conclusions - Considering 2017-2018 forecasts for sales of two large-scale retailing types, it is important to predict future sales magnitude and to produce the useful information for reforming financial conditions and related policies, so that the impacts of any marketing or management scheme can be compared against the do-nothing scenario.

Short-term Electric Load Forecasting for Summer Season using Temperature Data (기온 데이터를 이용한 하계 단기전력수요예측)

  • Koo, Bon-gil;Kim, Hyoung-su;Lee, Heung-seok;Park, Juneho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1137-1144
    • /
    • 2015
  • Accurate and robust load forecasting model is very important in power system operation. In case of short-term electric load forecasting, its result is offered as an standard to decide a price of electricity and also can be used shaving peak. For this reason, various models have been developed to improve forecasting accuracy. In order to achieve accurate forecasting result for summer season, this paper proposes a forecasting model using corrected effective temperature based on Heat Index and CDH data as inputs. To do so, we establish polynomial that expressing relationship among CDH, load, temperature. After that, we estimate parameters that is multiplied to each of the terms using PSO algorithm. The forecasting results are compared to Holt-Winters and Artificial Neural Network. Proposing method shows more accurate by 1.018%, 0.269%, 0.132% than comparison groups, respectively.