• Title/Summary/Keyword: Holographic optical elements

Search Result 21, Processing Time 0.023 seconds

Development of holographic Optical Elements (홀로그래픽 광학소자 개발)

  • 정만호;송재봉;이인원
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.07a
    • /
    • pp.87-93
    • /
    • 1990
  • Estimation and collection of the suitable recording materials are important for the fabrication of the holographic optical elements. In this study, silver halide emulsion, photoresist and dichromated gelatin are selected as a recording materials to investigate the properties and processing methods. Some parameters which affect the diffraction efficiencies of the holographic optical elements (HOE) are presented. As an example of the HOE, the results of design and the fabrication method of the off axis 12P hologram lens are also presented.

  • PDF

Applications of Holographic Optical Elements and Systems (홀로그래피 광학소자 및 시스템 응용)

  • Kim, Nam;Piao, Mei-Lan
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.3
    • /
    • pp.125-130
    • /
    • 2014
  • Holographic optical elements (HOEs) provide systems of thin-film optics that could include a variety of functions and have many advantages as optical devices in various research fields. Research and developments based on the use of HOEs in the fields of communications and displays are in progress. This paper introduces the properties of HOEs and their applications in diffractive optical elements (DOEs), holographic projection screens, and head-mounted displays (HMDs). For widespread use of HOE technology in these various applications some challenges need to be solved, as discussed in this paper.

A Study on Dichromated Gelatin for Recording of HOE (홀로그래픽 광학소자 제작을 위한 dichromated gelatin 연구)

  • Man Ho Jeong
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.112-114
    • /
    • 1990
  • A method for fabrication of holographic optical elements (HOE) using dichromated gelatin (DGG) as a recording material is presented. we describe the holographic properties of the DGG and the processing techniques. Holographic characteristics of the DGG including exposure characteristics, diffraction efficiency and angular sensitivity are also discussed. The diffraction efficiency of the obtained holographic grating is about 84%.

  • PDF

Full Color Holographic Optical Element Fabrication for Waveguide-type Head Mounted Display Using Photopolymer

  • Piao, Jing-Ai;Li, Gang;Piao, Mei-Lan;Kim, Nam
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.242-248
    • /
    • 2013
  • Full color holographic optical element fabrication using a photopolymer is proposed for a waveguide-type head mounted display. The fabricated full color holographic optical elements can be attached to the waveguide to replace the conventional couple-in and couple-out optics in the head mounted display. To implement the system, this study analyzed the optical characteristics of the photopolymer using three lasers (red, green and blue). Considering the color uniformity, a new laminated structure for a full color holographic optical element was also designed. The proposed system was confirmed experimentally.

Photopolymer-based Surface-normal Input/Output Volume Holographic Grating Coupler for 1550-nm Optical Wavelength

  • Lee, Kwon-Yeon;Jeung, Sang-Huek;Cho, Byung-Mo;Kim, Nam
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.17-21
    • /
    • 2012
  • A surface-normal input/output volume holographic grating coupler (VHGC) operating at 1550nm wavelength region by using a $10{\mu}m$-thick DuPont photopolymer film is designed and fabricated. The angular and wavelength responses of the input/output VHGC are investigated in order to validate applicability of this device in integrated optics and optical communications. The effect of incident-beam position on the output reflectance to determine optimum condition for input coupling is also presented. The fabricated input/output VHGC exhibited an angular selectivity of ${\sim}0.027^{\circ}$, a wavelength selectivity of ~0.8 nm, and an output peak reflectance of 34.13%.

Control of Center Wavelength and Bandwidth of Holographic Reflection Filter (홀로그래픽 반사형 필터의 중심파장과 대역폭의 조절방법)

  • 정만호
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.276-280
    • /
    • 1993
  • Holographic reflection filters are fabricated by using the dichromated gelatin film. The characteristics of diffraction efficiency, center wavelength, and bandwidth which are important parameters of reflection-type holographic optical elements is explained from the experimental results, and control method of these parameters is presented.

  • PDF

Low-Cost Hologram Module for Optical Pickup by Adjusting Photodiode Package (포토 다이오드 조정방식을 이용한 광 픽업용 저가 홀로그램 모듈)

  • Jeong, Ho-Seop;Kyong, Chon-Su
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.345-353
    • /
    • 2005
  • We proposed a new and cost-effective method fer assembling holographic pickup modules without any high resolution vision system. Assembling was accomplished by adjusting photodiode package only, leading to a low cost, holographic pickup module. Focus and tracking error signals were simply determined by comparing spot sizes and by using the 3 beam method, respectively, based on four-sectional holographic optical elements. In experiment, we assembled a hologram module and estimated performance of the proposed method fur a holographic pickup module used in compact disc system.

Determining Two-Sided Surface Profiles of Micro-Optical Elements Using a Dual-Wavelength Digital Holographic Microscope With Liquids

  • Lee, Hong Seok;Shin, Sanghoon;Lee, Heonjoo;Yu, Younghun
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.495-499
    • /
    • 2014
  • In this paper, a method is proposed for simultaneously measuring the front and back surface profiles of transparent micro-optical components. The proposed method combines a dual-wavelength digital holographic microscope with liquids to record holograms at different wavelengths, and then numerically reconstructs the three-dimensional phase information to image the front and back sides of the sample. A theoretical model is proposed to determine the surface information, and imaging of an achromatic lens is demonstrated experimentally. Unlike conventional interferometry, our proposed method supports nondestructive measurement and direct observation of both front and back profiles of micro-optical elements.

Polarization property of dichromated gelatin hologram and it's application to holographic polarization separation element (Dichromated Gelatin 홀로그램의 편광 특성과 편광분리 소자 응용)

  • 이영락;임용석;곽종훈;최옥식;박진원;이윤우
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.260-266
    • /
    • 1997
  • Holographic optical elements for polarization separation (HPS) are fabricated in a dichromated gelatin(DCG) thin film of 7${\mu}{\textrm}{m}$ thickness. The polarization properties of HPS is characterized by measuring diffraction efficiency with several physical parameters like exposure time, incident angle and read-out polarization angles. The experimental data are compared with theoretical results based on Kogelnik's coupled wave theory, which shows good agreement. It is also found that the HPS element has a very high extinction ratio of polarization over 500:1 for S and P polarizations, respectively, with He-Ne laser wavelength. We also propose an optical switch optical interconnects by using HPS elements.

  • PDF

Omni-directional Tabletop Display Using Holographic Diffusion Screen

  • Fujii, Daiki;Sakamoto, Kunio;Nomura, Shusaku;Hirotomi, Tetsuya;Shiwaku, Kuninori;Hirakawa, Masahito
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1308-1311
    • /
    • 2009
  • The authors describe a 360 degree viewing display that can be viewed from any direction. To generate all-around 360 degree viewing window, we developed a sp ecial diffusion screen with one viewing aperture using holographic optical elements.

  • PDF