DOI QR코드

DOI QR Code

Full Color Holographic Optical Element Fabrication for Waveguide-type Head Mounted Display Using Photopolymer

  • Piao, Jing-Ai (College of Electrical and Computer Engineering, Chungbuk National University) ;
  • Li, Gang (College of Electrical and Computer Engineering, Chungbuk National University) ;
  • Piao, Mei-Lan (College of Electrical and Computer Engineering, Chungbuk National University) ;
  • Kim, Nam (College of Electrical and Computer Engineering, Chungbuk National University)
  • Received : 2013.03.22
  • Accepted : 2013.05.23
  • Published : 2013.06.25

Abstract

Full color holographic optical element fabrication using a photopolymer is proposed for a waveguide-type head mounted display. The fabricated full color holographic optical elements can be attached to the waveguide to replace the conventional couple-in and couple-out optics in the head mounted display. To implement the system, this study analyzed the optical characteristics of the photopolymer using three lasers (red, green and blue). Considering the color uniformity, a new laminated structure for a full color holographic optical element was also designed. The proposed system was confirmed experimentally.

Keywords

References

  1. J. E. Melzer and K. Moffitt, Head Mounted Displays: Designing for the User (McGraw Hill, New York, USA, 1997).
  2. M. G. Tomilin, "Head-mounted displays," J. Opt. Technol. 66, 528-533 (1999). https://doi.org/10.1364/JOT.66.000528
  3. H. Hua, A. Girardot, C. Gao, and J. P. Rolland, "Engineering of head-mounted projective displays," Appl. Opt. 39, 3814-3824 (2000). https://doi.org/10.1364/AO.39.003814
  4. W. C. Su, C. Y. Chen, and Y. F. Wang, "Stereogram implemented with a holographic image splitter," Opt. Express 19, 9942-9949 (2011). https://doi.org/10.1364/OE.19.009942
  5. B. C. Cho, J. S. Gu, and E. S. Kim, "Implementation of multiview 3D display system using volume holographic optical element," Proc. SPIE 4567, 224-232 (2002).
  6. T. Ando, K. Yamasaki, M. Okamoto, T. Matsumoto, and E. Shimizu, "Evaluation of HOE for head-mounted display," Proc. SPIE 3637, 110 (1999).
  7. Y. H. Oh, S. Lim, and C. S. Go, "Alternative method of AWG phase measurement based on fitting interference intensity," J. Opt. Soc. Korea 16, 91-94 (2012). https://doi.org/10.3807/JOSK.2012.16.2.091
  8. Y. Amitai, S. Reinhorn, and A. A. Friesem, "Visor-display design based on planar holographic optics," Appl. Opt. 34, 1352-1356 (1995). https://doi.org/10.1364/AO.34.001352
  9. I. Kasai, Y. Tanijiri, T. Endo, and H. Ueda, "Actually wearable see-through display using HOE," Int. Conf. ODF 2, 117-120 (2000).
  10. H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, "A full-color eyewear display using planar waveguides with reflection volume holograms," J. Soc. Info. Display 17, 185-193 (2009). https://doi.org/10.1889/JSID17.3.185
  11. M. L. Piao, N. Kim, and J. H. Park, "Phase contrast projection display using photopolymer," J. Opt. Soc. Korea 12, 319-325 (2008). https://doi.org/10.3807/JOSK.2008.12.4.319
  12. K. Y. Lee, S. H. Jeung, B. M. Cho, and N. Kim, "Photopolymer-based surface-normal input/output volume holographic grating coupler for 1550-nm optical wavelength," J. Opt. Soc. Korea 16, 17-21 (2012). https://doi.org/10.3807/JOSK.2012.16.1.017
  13. E. Fernandez, A. Marquez, S. Gallego, R. Fuentes, C. García, and I. Pascual, "Hybrid ternary modulation applied to multiplexing holograms in photopolymers for data page storage," J. Lightwave Technol. 28, 776-783 (2010). https://doi.org/10.1109/JLT.2010.2041187
  14. S. H. Stevenson, M. L. Armstrong, P. J. O'Connor, and D. F. Tipton, "Advances in photopolymer films for display holography," Proc. SPIE 2333, 60-70 (1995).
  15. N. Kim and E. S. Hwang, "Analysis of optical properties with photopolymers for holographic application." J. Opt. Soc. Korea 10, 1-10 (2006). https://doi.org/10.3807/JOSK.2006.10.1.001
  16. E. Fernandez, M. Perez-Molina, R. Fuentes, M. Ortuno, C. Neipp, A. Belendez, and I. Pascual, "Analysis of holographic reflection gratings recorded in polyvinyl alcohol/acrylamide photopolymer," Appl. Opt. 52, 1581-1590 (2013). https://doi.org/10.1364/AO.52.001581
  17. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. J. 48, 2909-2947 (1969). https://doi.org/10.1002/j.1538-7305.1969.tb01198.x

Cited by

  1. Ag-doped inorganic–organic hybrid films for rewritable hologram memory application vol.79, pp.2, 2016, https://doi.org/10.1007/s10971-015-3908-9
  2. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms vol.23, pp.3, 2015, https://doi.org/10.1364/OE.23.003534
  3. Three-dimensional/two-dimensional convertible projection screen using see-through integral imaging based on holographic optical element vol.54, pp.30, 2015, https://doi.org/10.1364/AO.54.008856
  4. Design of a Low Distortion Head-Mounted Display with Freeform Reflective Mirror Based on Two Ellipsoids Structure vol.20, pp.2, 2016, https://doi.org/10.3807/JOSK.2016.20.2.234
  5. Experimental method for testing diffraction properties of reflection waveguide holograms vol.53, pp.19, 2014, https://doi.org/10.1364/AO.53.004206
  6. Holographic display for see-through augmented reality using mirror-lens holographic optical element vol.41, pp.11, 2016, https://doi.org/10.1364/OL.41.002486
  7. Characterization and Optimization of Field of View in a Holographic Waveguide Display vol.9, pp.6, 2017, https://doi.org/10.1109/JPHOT.2017.2767606
  8. Space bandwidth product enhancement of holographic display using high-order diffraction guided by holographic optical element vol.23, pp.26, 2015, https://doi.org/10.1364/OE.23.033170
  9. Design of a See-Through Head-Mounted Display with a Freeform Surface vol.19, pp.6, 2015, https://doi.org/10.3807/JOSK.2015.19.6.614
  10. Holographic Solar Energy Concentrator Using Angular Multiplexed and Iterative Recording Method vol.8, pp.6, 2016, https://doi.org/10.1109/JPHOT.2016.2634699
  11. Selection of absorptive materials for non-reflective wire grid polarizers vol.17, pp.7, 2016, https://doi.org/10.1007/s12541-016-0110-0
  12. 3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation vol.23, pp.25, 2015, https://doi.org/10.1364/OE.23.032025
  13. Highly efficient waveguide display with space-variant volume holographic gratings vol.56, pp.34, 2017, https://doi.org/10.1364/AO.56.009390
  14. Full-color holographic diffuser using time-scheduled iterative exposure vol.54, pp.16, 2015, https://doi.org/10.1364/AO.54.005252
  15. Optimization of Photopolymer Materials for the Fabrication of a Holographic Waveguide vol.9, pp.9, 2017, https://doi.org/10.3390/polym9090395
  16. Applications of Holographic Optical Elements and Systems vol.25, pp.3, 2014, https://doi.org/10.3807/KJOP.2014.25.3.125
  17. Achieving high levels of color uniformity and optical efficiency for a wedge-shaped waveguide head-mounted display using a photopolymer vol.53, pp.10, 2014, https://doi.org/10.1364/AO.53.002180
  18. Development of an immersive virtual reality head-mounted display with high performance vol.55, pp.25, 2016, https://doi.org/10.1364/AO.55.006969
  19. Viewing angle enhancement of an integral imaging display using Bragg mismatched reconstruction of holographic optical elements vol.55, pp.3, 2016, https://doi.org/10.1364/AO.55.000A95
  20. The effect of three electron donors on the initiator system efficiency of photopolymer film photosensitized by methylene blue vol.120, 2017, https://doi.org/10.1016/j.matdes.2017.01.093
  21. Genetic algorithm-based design method for multilevel anisotropic diffraction gratings vol.24, pp.4, 2017, https://doi.org/10.1007/s10043-017-0341-z
  22. Integrated holographic waveguide display system with a common optical path for visible and infrared light vol.26, pp.25, 2018, https://doi.org/10.1364/OE.26.032802
  23. Off-axis virtual-image display and camera by holographic mirror and blur compensation vol.26, pp.19, 2018, https://doi.org/10.1364/OE.26.024864
  24. Design of a high-performance in-coupling grating using differential evolution algorithm for waveguide display vol.26, pp.20, 2018, https://doi.org/10.1364/OE.26.026646
  25. P-98: Incorporating Space-variant Holographic Grating in Waveguide Display vol.49, pp.1, 2018, https://doi.org/10.1002/sdtp.12282
  26. Holographic waveguides in photopolymers vol.27, pp.2, 2019, https://doi.org/10.1364/OE.27.000827