• Title/Summary/Keyword: Hologram Compression

Search Result 52, Processing Time 0.033 seconds

A Resolution-Scalable Data Compression Method of a Digital Hologram (디지털 홀로그램의 해상도-스케일러블 데이터 압축 방법)

  • Kim, Yoonjoo;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.19 no.2
    • /
    • pp.174-183
    • /
    • 2014
  • This paper is to propose a scalable video coding scheme for adaptive digital hologram video service for various reconstruction environments. It uses both the light source information and digital hologram at both the sending side and the receiving side. It is a resolution-scalable coding method that scales the resolution, that is, the size of the reconstructed image. The method compresses the residual data for both the digital hologram and the light source information. For the digital hologram, a lossy compression method is used, while for the light source information, a lossless compression method is used. The experimental results showed that the proposed method is superior to the existing method in the image quality at the same compression ratio. Especially it showed better performance than the existing method as the compression ratio becomes higher.

Compression Method for Digital Hologram using Motion Prediction Method in Frequency-domain (주파수 영역에서 움직임 예측을 이용한 디지털 홀로그램 압축 기법)

  • Choi, Hyun-Jun;Bae, Yun-Jin;Seo, Young-Ho;Kang, Chang-Soo;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.2091-2098
    • /
    • 2010
  • This paper proposes a hologram data compression scheme that uses the existing image/video compression techniques, in which the existing techniques are modified appropriately to fit to the characteristics of hologram. In this paper we use CGH as the hologram data. The proposed scheme uses the generation characteristics of a CGH to consist of a pre-processing, spatial segmentation of a CGH, frequency-transformation with 2D-DCT (2-dimensional discrete cosine transform), and motion estimation and residual image generation in the frequency-domain. It uses H.264/AVC, the lossless compressor BinHex, and a linear quantizer that we have made. From the experiments the proposed scheme showed the image quality of about 25.4 dB at the compression ratio of 10:1 and about 16.5dB at 90:1 compression ratio.

Hologram Compression Technique using Motion Compensated Temporal Filtering (움직임보상 시간적 필터링을 이용한 홀로그램 압축 기법)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11B
    • /
    • pp.1296-1302
    • /
    • 2009
  • We propose an efficient coding method of digital holograms using MCTF and standard compression tools for video. The hologram is generated by a computer-generated hologram (CGH) algorithm with both an object image and its depth information. The proposed coding consists of localization by segmenting a hologram, frequency transform using $64\times64$ segment size, 2-D discrete cosine transform DCT for extracting redundancy, motion compensated temporal filtering (MCTF), segment scanning the segmented hologram to form a video sequence, and video coding, which uses H.264/AVC. The proposed algorithm illustrates that it has better properties for reconstruction, 10% higher compression rate than previous research in case of object.

Research and Standardization Trends of Digital Hologram Compression (디지털 홀로그램 압축 기술 및 표준화 동향)

  • Oh, K.J.;Park, J.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.6
    • /
    • pp.145-155
    • /
    • 2019
  • Holography is a technique that can acquire and reproduce 3D objects nearly perfectly by representing both the amplitude and phase of light. Recently, digital holography has received considerable attention because it is simpler than analog holography from acquisition to reproduction. The data size of the digital hologram increases tremendously as the quality of digital holograms depends on their pixel pitch and resolution. Hence, efficient compression is necessary to realize holographic imaging services. In this report, we introduce recent digital hologram compression techniques and JPEG Pleno holography, which is the first international standardization activity for digital hologram compression. Furthermore, we discuss the future of this field.

A New Coding Technique for Scalable Video Service of Digital Hologram (디지털 홀로그램의 적응적 비디오 서비스를 위한 코딩 기법)

  • Seo, Young-Ho;Bea, Yoon-Jin;Lee, Yoon-Hyuk;Choi, Hyun-Jun;Yoo, Ji-Sang;Kim, Dong-Wook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.92-103
    • /
    • 2012
  • In this paper, we discuss and propose a new algorithm of coding technique for scalably servicing holographic video in various decoding environment. The proposed algorithm consists of the hologram-based resolution scalable coding (HRS) and the light source-based SNR scalable coding (LSS). They are classified by the method generating and capturing hologram. HRS is a scalable coding technique for the optically captured hologram and LSS is one for the light source before generating hologram. HRS can provide the scalable service of 8 steps with the compression ratio from 1:1 to 100:1 for a $1,024{\times}1,024$ hologram. LSS can also provide the various service depending on the number of the light source division using lossless compression. The proposed techniques showed the scalable holographic video service according to the display with the various resolutions, computational power of the receiving equipment, and the network bandwidth.

Computer generated hologram compression using video coding techniques (비디오 코딩 기술을 이용한 컴퓨터 형성 홀로그램 압축)

  • Lee, Seung-Hyun;Park, Min-Sun
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.5
    • /
    • pp.767-774
    • /
    • 2005
  • In this paper, we propose an efficient coding method of digital hologram using standard compression tools for video images. At first, we convert fringe patterns into video data using a principle of CGH(Computer Generated Hologram), and then encode it. In this research, we propose a compression algorithm is made up of various method such as pre-processing for transform, local segmentation with global information of object image, frequency transform for coding, scanning to make fringe to video stream, classification of coefficients, and hybrid video coding. The proposed algorithm illustrated that it have better properties for reconstruction and compression rate than the previous methods.

  • PDF

Adaptive Wavelet Transform for Hologram Compression (홀로그램 압축을 위한 적응적 웨이블릿 변환)

  • Kim, Jin-Kyum;Oh, Kwan-Jung;Kim, Jin-Woong;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.26 no.2
    • /
    • pp.143-154
    • /
    • 2021
  • In this paper, we propose a method of compressing digital hologram standardized data provided by JPEG Pleno. In numerical reconstruction of digital holograms, the addition of random phases for visualization reduces speckle noise due to interference and doubles the compression efficiency of holograms. Holograms are composed of completely complex floating point data, and due to ultra-high resolution and speckle noise, it is essential to develop a compression technology tailored to the characteristics of the hologram. First, frequency characteristics of hologram data are analyzed using various wavelet filters to analyze energy concentration according to filter types. Second, we introduce the subband selection algorithm using energy concentration. Finally, the JPEG2000, SPIHT, H.264 results using the Daubechies 9/7 wavelet filter of JPEG2000 and the proposed method are used to compress and restore, and the efficiency is analyzed through quantitative quality evaluation compared to the compression rate.

A FRINGE CHARACTER ANALYSIS OF FRINGE IMAGE (Fringe 영상의 주파수 특성 분석)

  • Seo Young-Ho;Choi Hyun-Jun;Kim Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11C
    • /
    • pp.1053-1059
    • /
    • 2005
  • The computer generated hologram (CGH) designs and produces digital information for generating 3-D (3-Dimension) image using computer and software instead of optically-sensed hologram of light interference, and it can synthesis a virtual object which is physically not in existence. Since digital hologram includes an amount of data as can be seen at the process of digitization, it is necessary that the data representing digital hologram is reduced for storing, transmission, and processing. As the efforts that are to handle hologram with a type of digital information have been increased, various methods to compress digital hologram called by fringe pattern are groped. Suitable proposal is encoding of hologram. In this paper, we analyzed the properties of CGH using tools of frequency transform, assuming that a generated CGH is a 2D image by introducing DWT that is known as the better tool than DCT for frequency transform. The compression and reconstruction result which was extracted from the wavelet-based codecs illustrates that it has better properties for reconstruction at the maximum 2 times higher compression rate than the Previous researches of Yoshikawa[2] and Thomas[3].

Quantization Method for Normalization of JPEG Pleno Hologram (JPEG Pleno 홀로그램 데이터의 정규화를 위한 양자화)

  • Kim, Kyung-Jin;Kim, Jin-Kyum;Oh, Kwan-Jung;Kim, Jin-Woong;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.25 no.4
    • /
    • pp.587-597
    • /
    • 2020
  • In this paper, we analyze the normalization that occurs when processing digital hologram and propose an optimized quantization method. In JPEG Pleno, which standardizes the compression of holograms, full complex holograms are defined as complex numbers with 32-bit or 64-bit precision, and the range of values varies greatly depending on the method of hologram generation and object type. Such data with high precision and wide dynamic range are converted to fixed-point or integer numbers with lower precision for signal processing and compression. In addition, in order to reconstruct the hologram to the SLM (spatial light modulator), it is approximated with a precision of a value that can be expressed by the pixels of the SLM. This process can be refereed as a normalization process using quantization. In this paper, we introduce a method for normalizing high precision and wide range hologram using quantization technique and propose an optimized method.

A Study on the Compression Efficiency of a Digital Hologram Video using Domain Transforms and H.265/HEVC (도메인 변환 및 H.265/HEVC를 이용한 디지털 홀로그램 비디오의 압축효율에 대한 연구)

  • Jang, Su-Jin;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.592-608
    • /
    • 2016
  • Recently, many researches on digital holograms, which retain almost perfect 3 dimensional image information, have been performed actively that it seems for them to be serviced soon. Accordingly, this paper proposes a data compression technique for a digital hologram video for this service. It uses H.265/HEVC, the most recent international 2 dimensional video compression standard, for which we consider various domain transform methods to increase the correlation among the pixels in a digital hologram. Also we consider the various parameters on H.265/HEVC. The purpose of this paper is to find empirically the optimal condition for the domain transform method, the size of transform unit, and the H.265/HEVC parameters. The proposed method satisfying the optimal parameter set found is compared to the existing methods to prove that ours shows better performance.