DOI QR코드

DOI QR Code

Quantization Method for Normalization of JPEG Pleno Hologram

JPEG Pleno 홀로그램 데이터의 정규화를 위한 양자화

  • Received : 2020.04.02
  • Accepted : 2020.06.16
  • Published : 2020.07.30

Abstract

In this paper, we analyze the normalization that occurs when processing digital hologram and propose an optimized quantization method. In JPEG Pleno, which standardizes the compression of holograms, full complex holograms are defined as complex numbers with 32-bit or 64-bit precision, and the range of values varies greatly depending on the method of hologram generation and object type. Such data with high precision and wide dynamic range are converted to fixed-point or integer numbers with lower precision for signal processing and compression. In addition, in order to reconstruct the hologram to the SLM (spatial light modulator), it is approximated with a precision of a value that can be expressed by the pixels of the SLM. This process can be refereed as a normalization process using quantization. In this paper, we introduce a method for normalizing high precision and wide range hologram using quantization technique and propose an optimized method.

본 논문에서는 디지털 홀로그램을 처리하는 과정에서 필수적으로 발생하는 양자화 과정에 대해 분석하고 최적화된 양자화기를 제안한다. 홀로그램의 압축 표준을 제정하고 있는 JPEG Pleno에서 full complex 홀로그램은 32비트 혹은 64비트의 정밀도를 갖는 복소수로 정의되고, 값의 범위는 홀로그램의 생성 방법 및 객체의 형태에 따라서 매우 다양하다. 이와 같은 높은 정밀도와 넓은 범위를 갖는 데이터는 신호 처리 및 압축 등의 이유로 인해 보다 낮은 정밀도를 갖는 고정소수점 데이터 혹은 정수형 데이터로 변환된다. 또한 다양한 신호처리 과정을 거친 홀로그램 데이터를 SLM에 재생하기 위해서는 SLM의 화소가 표현할 수 있는 값의 정밀도로 근사화된다. 이러한 과정은 양자화를 통한 정규화 과정이라 할 수 있다. 본 논문에서는 높은 정밀도와 넓은 범위의 홀로그램 데이터를 양자화 기법을 이용하여 정규화시키는 방법에 대해 소개하고 최적화된 방법을 제시한다.

Keywords

References

  1. Dennis Gabor, "'A new microscopic principle", Nature, 161, pp. 777- 778, 1948. https://doi.org/10.1038/161777a0
  2. P. Hariharan, "Basics of Holography", Cambridge University Press, May 2002.
  3. W. Osten, A. Faridian, P. Gao, K. Körner, D. Naik, G. Pedrini, Al. Kumar Singh, M. Takeda, and M. Wilke, "Recent advances in digital holography [Invited]," Appl. Opt. 53, G44-G63, 2014. https://doi.org/10.1364/AO.53.000G44
  4. H. Yoshikawa, "Digital holographic signal processing," Proc. TAO First International Symposium on Three Dimensional Image Communication Technologies, pp. S-4-2, Dec. 1993.
  5. Y.H. Seo, Hyun-Jun Choi, and Dong-Wook Kim, "Lossy Coding Technique for Digital Holographic Signal", SPIE Optical Engineering, Vol. 45, No. 6, pp. 065802-1-065802-10, Jun. 2006.
  6. Y.H. Seo, H. J. Choi, J. S. Yoo, G. S. Lee, C. H. Kim, S. H. Lee, S. H. Lee, and D. W. Kim, "Digital hologram compression technique by eliminating spatial correlations based on MCTF." Optics Communications, vol. 283, no. 21, pp. 4261-4270, Nov. 2010. https://doi.org/10.1016/j.optcom.2010.06.052
  7. F. Dufaux, Y. Xing, Y. B. P. Popescu, and P. Schelkens, "Compression of digital holographic data: an overview." In Applications of Digital Image Processing XXXVIII. International Society for Optics and Photonics. vol. 9599, no. 95990I, pp. 1-11, Sep. 2015.
  8. J. P. Peixeiro, C. Brites, J. Ascenso, and F. Pereira, "Holographic data coding: Benchmarking and extending hevc with adapted transforms." IEEE Transactions on Multimedia, vol. 20, no. 2, pp. 282-297, Feb.2018 https://doi.org/10.1109/TMM.2017.2742701
  9. Y. H. Seo, H. J. Choi and D. W. Kim, "3D scanning-based compression technique for digital hologram video", Signal Processing: Image Communication, vol. 22, no. 2, pp. 144-156, Nov. 2006.
  10. E. Darakis and T. J. Naughton, "Compression of digital hologram sequences using MPEG-4", SPIE Proc, vol. 7358, pp. 735811-1, May 2009.
  11. P. Tsang, K. W. K. Cheung, T. C. Poon, and C. Zhou, "Demonstration of compression ratio of over 4000 times for each digital hologram in a sequence of 25 frames in a holographic video." Journal of Optics, vol. 14, no. 12, pp. 1-7, Dec. 2012.
  12. Y.H. Seo, Y. H. Lee, J. S. Yoo, and D. W. Kim, "Scalable hologram video coding for adaptive transmitting service." Applied optics, vol. 52, no. 1, pp. A254-A268, Jan. 2013. https://doi.org/10.1364/AO.52.00A254
  13. JPEG Pleno https://jpeg.org/jpegpleno/
  14. H. Gu Kim and Y. M. Ro, "Ultrafast layer based computer-generated hologram calculation with sparse template holographic fringe pattern for 3-D object," Opt. Express 25, 30418-30427, 2017. https://doi.org/10.1364/OE.25.030418
  15. H. Zhang, L. Cao, and G. Jin, "Computer-generated hologram with occlusion effect using layer-based processing," Appl. Opt. 56, F138-F143, 2017. https://doi.org/10.1364/AO.56.00F138
  16. P. Su, W. Cao, J. Ma, Bi. Cheng, X. Liang, L. Cao, and G. Jin, "Fast Computer-Generated Hologram Generation Method for Three-Dimensional Point Cloud Model," J. Display Technol. 12, 1688-1694, 2016. https://doi.org/10.1109/JDT.2016.2553440
  17. P. W. M. Tsang, T.-C. Poon, and Y. M. Wu, "Review of fast methods for point-based computer-generated holography [Invited]," Photon. Res. 6, 837-846, 2018. https://doi.org/10.1364/PRJ.6.000837
  18. H. Yeom, Y. Ji, S. Kim, S. Ko, S. Kim, H. Zhang, B. Li, K. Shin, M. Askari, and J. Park, "Hologram synthesis with correct reflectance distribution in fully analytic mesh-based method," in Imaging and Applied Optics 2016, OSA Technical Digest (online), Optical Society of America, 2016.0
  19. Y. Ju and J. Park, "Fast Generation of Mesh Based CGH in Head-Mounted Displays using Foveated Rendering Technique," in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), OSA Technical Digest, Optical Society of America, 2018.
  20. Logan A. Williams, Georges Nehmetallah, Rola Aylo, and Partha P. Banerjee, "Application of up-sampling and resolution scaling to Fresnel reconstruction of digital holograms," Appl. Opt. 54, 1443-1452. 2015. https://doi.org/10.1364/AO.54.001443
  21. S. Lee, H. Chang, H. Wey, and D. Nam, "Sampling and error analysis of radial symmetric interpolation for fast hologram generation," Appl. Opt. 55, A104-A110, 2016. https://doi.org/10.1364/AO.55.00A104
  22. Chor Shen Tay, Ken Tanizawa, and Akira Hirose, "High-quality frame interpolation in computer generated holographic movies using coherent neural networks with a hybrid learning method," Appl. Opt. 47, 5221-5228, 2008. https://doi.org/10.1364/AO.47.005221
  23. P. W. M. Tsang, Y. T. Chow, and T.-C. Poon, "Enhancement on the generation of sampled phase-only holograms," Chin. Opt. Lett. 13, 060901, 2015. https://doi.org/10.3788/COL201513.060901
  24. Yuan Hong, Tielin Shi, Yichun Zhang, and Guanglan Liao, "Fringe contrast enhancement of digital off-axis hologram via sparse representation," Chin. Opt. Lett. 14, 060901, 2016. https://doi.org/10.3788/COL201614.060901
  25. Lingfeng Yu, Yingfei An, and Lilong Cai, "Numerical reconstruction of digital holograms with variable viewing angles," Opt. Express 10, 1250-1257, 2002. https://doi.org/10.1364/OE.10.001250
  26. Xin Li, Juan Liu, Tao Zhao, and Yongtian Wang, "Color dynamic holographic display with wide viewing angle by improved complex amplitude modulation," Opt. Express 26, 2349-2358, 2018. https://doi.org/10.1364/OE.26.002349
  27. P. Memmolo, V. Bianco, M. Paturzo, B. Javidi, P. A. Netti, and P. Ferraro, "Encoding multiple holograms for speckle-noise reduction in optical display," Opt. Express 22, 25768-25775, 2014. https://doi.org/10.1364/OE.22.025768
  28. D. Hincapie, J. H.-Ramirez, and J. G.-Sucerquia, "Single-shot speckle reduction in numerical reconstruction of digitally recorded holograms," Opt. Lett. 40, 1623-1626, 2015. https://doi.org/10.1364/OL.40.001623
  29. J. Kim, K. Kim, W. Kim, Y. Lee, K. Oh, J. Kim, D. Kim, Y. Seo, "Characteristic Analysis for Compression of Digital Hologram", JBE, Vol. 24, No. 1, pp.164-181, Jan. 2019.
  30. https://en.wikipedia.org/wiki/Quantization_(signal_processing)
  31. https://en.wikipedia.org/wiki/A-law_algorithm
  32. Gersho, Allen, and Robert M. Gray. Vector quantization and signal compression. Vol. 159. Springer Science & Business Media, 2012.
  33. https://en.wikipedia.org/wiki/%CE%9C-law_algorithm