• Title/Summary/Keyword: Hollow-fiber Membrane

Search Result 425, Processing Time 0.019 seconds

Nitrogen and Phosphorus Removal in Long Term Pilot Plant Operation Using Submerged Hollow Fiber Membrane and Ferric Chloride (침지형 중공사막과 철염을 이용한 Pilot MBR 공정의 장기운전에 따른 질소, 인 제거 특성)

  • Cheong, Jin-Ho;Heo, Yong-Rok;Im, Jeong-Dae;Lee, Eui-Sin;Park, Myung-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1168-1173
    • /
    • 2005
  • Pilot scale vertical-type membrane bioreactor was operated to examine the effect of $FeCl_3$ injection on the removal of organics, nitrogen and phosphorous, and additionally trans-membrane pressure (TMP) was observed. The membrane type was hollow fiber membrane with pore size of $0.25\;{\mu}m$, and the material was polytetrafluoroethylene (PTFE). The membrane permeate was continuously removed by a pump under a constant flux ($25\;L/m^2/h$). Air back-flushing technique were adopted to reduce fouling. As a result, TMP was increased more slowly than that of the operation without air back-flushing, During long-term operation, approximately 310 days, the injection of $FeCl_3$ was effective not only in removing phosphorous chemically but also in reducing TMP increase. Furthermore, while the average COD and T-N concentration of the effluent without $FeCl_3$ injection was 14.3 mg/L and 6.0 mg/L respectively, that of effluent with $FeCl_3$ was 11.3 mg/L and 6.0 mg/L respectively, which confirmed the effects of $FeCl_3$.

Study on the Pervaporation Seperation of Aqueous 1-Butanol Mixture Using Composite PEI/PDMS Membrane (1-Butanol / 물 혼합액의 PEI/PDMS 복합막 모듈을 이용한 투과증발 파일럿 분리특성)

  • Cheon, Bong su;Lee, Choong Sub;Ha, Sung Yong;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.4
    • /
    • pp.352-357
    • /
    • 2015
  • To determine the pervaporation separation characteristics of 1-butanol/water mixtures, PEI/PDMS hollow fiber membrane module commercialized by Airrane Co. was subjected to both lab and pilot tests. The 1% 1-butanol of 1-butanol/water feed mixture was used. The flux of $133g/m^2hr$ and separation factor of 23.4 at $30^{\circ}C$ were obtained whereas the $505g/m^2hr$ and 5.1 were measured at $50^{\circ}C$. When compared with the performance of the hollow fiber PDMS membrane by Nagasep Co., the higher flux of $10{\sim}20g/m^2hr$ was obtained by the module of Airrane Co. In order to realized the durability of Airrane Co. module, the long-term test of 35 days has been conducted and as a result, the flux $510{\sim}520g/m^2hr$ and separation factor 20~25 were maintained with the initial values.

New High Recovery Membrane Modules for Desalination

  • Fujiwara, Nobuya
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.1-12
    • /
    • 2002
  • Desalination by reverse osmosis (RO), which first entered commercial use in the 1970s, was initially mainly used for treating brackish water. Technological progress led to the development of an RO membrane enabling single-pass seawater desalination. Toyobo succeeded in developing a single-pass seawater desalination RO module composed of hollow fiber type membranes made of cellulose triacetate in 1978, and then in 1979 began production of the first commercially available double-element module. This double-element module has many advantages suitable for seawater desalination. It has high chlorine tolerance and high salt rejection, derived from the properties of the membrane material, and it is highly resistant to fouling and scaling matters due to the unique flow pattern and fiber bundle configuration. These advantages help to explain why the Toyobo double-element module has been used so successfully at the many seawater desalination plants around the world. Since the 1980s, large plants capable of desalinating several tens of thousands of cubic meters a day have sprung up around the Mediterranean and In the Middle East. The Jeddah RO Phase I Plant, which has a capacity of 56, 800m$^3$/day, went into operation in 1989. In 1994, the same sized Phase II Plant came on stream, giving the plant a huge total capacity of 113, 600m$^3$/day. The plant constructor Mitsubishi Heavy Industries, Ltd. (MHI), and the RO membrane manufacturer Toyobo Co., Ltd. In 1998, the world's largest RO seawater desalination plant in operation, which has a capacity of 128, 000m$^3$/day and is run by Saudi Arabia's Saline Water Conversion Corporation (SWCC), went into operation at Yanbu. RO seawater desalination technology has thus already reached the stage of full-scale commercial use. In order to encourage its wider use, however, RO desalination needs to be made more economical by lowering construction and water treatment costs. Toyobo has therefore developed a new economical RO desalination system by a recovery ratio of 60% using a high-pressure module with a high product flow rate. In 2000, Toyobo high recovery membrane module was selected for the largest seawater desalination plant in Japan, which has a capacity of 50, 000m$^3$/day.

  • PDF

Evaluations on the Characteristics of Pressure Drop f3r the Design of Intravascular Artificial Lung Assist Device (혈관 내 폐 보조장치 설계를 위한 압력손실 특성 평가)

  • 김기범;권대규;박재관;정경락;이삼철
    • Membrane Journal
    • /
    • v.13 no.1
    • /
    • pp.20-28
    • /
    • 2003
  • In this study, we try to formularize simultaneous equations to make a prediction about pressure drop for designing intravascular artificial lung assist device. Designing parameters to predict the effect of pressure drop and designed modules under various conditions were studied through an experimental modeling before inserting the artificial lung assist device into as venous. We measured pressure drop in various number of hollow fiber membranes, when the inside diameter of shell is fixed in 3 cm, and tried to develope the prediction equations by curve fitting based on the correlation between the experimental pressure drop and the device frontal area or packing density. The results showed that pressure drop increased with 2nd order functional formula as the liquid flow rate, the frontal area, and the packing density increased. Also, we can estimate the pressure drop as a function of the frontal area or packing density. The pressure drop obtained from the experiment was similar to that from the equation, confirming the usefulness of the equation.

Pretreatment Process for Performance Improvement of SIES at Kori Unit 2 in Korea

  • Lee, Sang-Jin;Yang, Ho-Yeon;Shin, Sang-Woon;Song, Myung-Jae
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.12-27
    • /
    • 2004
  • Pretreatment process consisted of submerged hollow-fiber microfiltration(HMF) membrane and spiral-wound nanofiltration(SNF) membrane has been developed by NETEC, KHNP for the purpose of improving the impurities of liquid radioactive waste before entering Selective Ion Exchange System(SIES). The lab-scale combined system was installed at Kori NPP #2 nuclear power plant and demonstration tests using actual liquid radioactive waste were carried out to verify the performance of the combined system. The submerged HMF membrane was adopted for removal of suspended solid in liquid radioactive waste and the SNF membrane was used for removal of particulate radioisotope such as, Ag-l10m and oily waste because ion exchange resin can not remove particulate radioisotopes. The liquid waste in Waste Holdup Tank (WHT) was processed with HMF and SNF membrane, and SIES. The initial SS concentration and total activity of actual waste were 38,000ppb and $1.534{\times}10_{-3}{\mu}Ci/cc$, respectively. The SS concentration and total activity of permeate were 30ppb and lower than LLD(Lower Limit of Detection), respectively.

  • PDF

Cytotoxicity of Listeriolysin O Produced by Membrane-Encapsulated Bacillus subtilis on Leukemia Cells

  • Stachowiak, R.;Granicka, L.H.;Wisniewski, J.;Lyzniak, M.;Kawiak, J.;Bielecki, J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.11
    • /
    • pp.1193-1198
    • /
    • 2011
  • Encapsulation of biological material in the permiselective membrane allows to construct a system separating cells from their products, which may find biotechnological as well as biomedical applications in biological processes regulation. Application of a permiselective membrane allows avoiding an attack of the implanted microorganisms on the host. Our aim was to evaluate the performance of Bacillus subtilis encapsulated in an elaborate membrane system producing listeriolysin O, a cytolysin from Listeria monocytogenes, with chosen eukaryotic cells for future application in anticancer treatment. The system of encapsulating in membrane live Bacillus subtilis BR1-S secreting listeriolysin O was proven to exert the effective cytotoxic activity on eukaryotic cells. Interestingly, listeriolysin O showed selective cytotoxic activity on eukaryotic cells: more human leukemia Jurkat T cells were killed than human chronic lymphocytic B cells leukemia at similar conditions in vitro. This system of encapsulated B. subtilis, continuously releasing bacterial products, may affect selectively different types of cells and may have future application in local anticancer treatment.

Surface properties and interception behaviors of GO-TiO2 modified PVDF hollow fiber membrane

  • Li, Dongmei;Liang, Jinling;Huang, Mingzhu;Huang, Jun;Feng, Li;Li, Shaoxiu;Zhan, Yongshi
    • Membrane and Water Treatment
    • /
    • v.10 no.2
    • /
    • pp.113-120
    • /
    • 2019
  • To investigate surface properties and interception performances of the new modified PVDF membrane coated with Graphene Oxide (GO) and nano-$TiO_2$ (for short the modified membrane) via the interface polymerization method combined with the pumping suction filtration way, filtration experiments of the modified membrane on Humic Acid (HA) were conducted. Results showed that the contact angle (characterizing the hydrophilicity) of the modified membrane decreased from $80.6{\pm}1.8^{\circ}$ to $38.6{\pm}1.2^{\circ}$. The F element of PVDF membrane surface decreased from 60.91% to 17.79% after covered with GO and $TiO_2$. O/C element mass ratio has a fivefold increase, the percentage of O element on the modified membrane surface increased from 3.83 wt% to 20.87%. The modified membrane surface was packed with hydrophilic polar groups (like -COOH, -OH, C-O, C=O, N-H) and a functional hydrophilic GO-polyamide-$TiO_2$ composite configuration. This configuration provided a rigid network structure for the firm attachment of GO and $TiO_2$ on the surface of the membrane and for a higher flux as well. The total flux attenuation rate of the modified membrane decreased to 35.6% while 51.2% for the original one. The irreversible attenuation rate has dropped 71%. The static interception amount of HA on the modified membrane was $158.6mg/m^2$, a half of that of the original one ($295.0mg/m^2$). The flux recovery rate was increased by 50%. The interception rate of the modified membrane on HA increased by 12% approximately and its filtration cycle was 2-3 times of that of the original membrane.

한외여과 관형막에서 대류촉진체의 영향

  • 민병렬;최안섭;진양기
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.46-47
    • /
    • 1996
  • 막분리 공정의 공업적인 이용을 위해서는 막을 특정 용기에 적재한 모듈의 형태가 요구되는데 모듈의 형태에 따라 평판형(plate and frame), 나권형(spiral wound), 관형(tubular), 중공사형(hollow fiber)모듈 등이 있다. 이 중에서 관형 시스템은 내경이 12.5~25 mm, 길이 0.6~6.4 m에 이르는 비교적 큰 open channel로 되어 있으며 공급액 유로가 일반적으로 커서 전처리를 행하지 않고도 fouling이 적으며, 또한 막 표면의 세정이 약품에 의한 것 이외에 스폰지 볼 등에 의한 물리적 세정도 가능하므로 응용 범위가 넓다는 것이 특징이다. 한외여과 공정의 가장 큰 문제점은 농도분극 및 fouling 현상에 의한 플럭스 감소이다. 농도분극 현상은 경계층에서 용질의 대류,확산적인 전달에 기인하여 막 표면으로 갈수록 진해지는 용액층의 형성을 의미한다. 이 현상은 가역적인 과정으로서 감압함으로 원상태로 회복이 가능하며 조작 압력에서 정상상태가 되면 막투과 플럭스는 일정한 값을 유지한다.

  • PDF

Pretreatment of Acrylic Wastewater and Application of UF/RO Processes (Acrylic폐수의 전처리 및 UF/RO공저의 적용)

  • 이광현
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2001.05a
    • /
    • pp.135-138
    • /
    • 2001
  • Acrylic wastewater flux was discussed using modules of ultrafiltration hollow fiber and reverse osmosis spiral wound. The optimum backflushing times of membranes were decided and the degree of fouling was discussed with operating time. Permeate flux was decreased rapidly at 12hrs. Separation processes with ultrafiltration and reverse osmosis membranes were not suitable to remove COD and TDS. The improvement of pretreatment processes was needed.

  • PDF