• Title/Summary/Keyword: Hollow piers

Search Result 35, Processing Time 0.021 seconds

A Parameter Study of Internally Confined Hollow Reinforced Concrete Piers (내부 구속 중공 RC 교각의 매개변수 연구)

  • Choi, Jun-Ho;Yoon, Ki-Yong;Han, Taek-Hee;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.59-62
    • /
    • 2007
  • The hollow RC(Reinforced concrete) pier has decrease of weight and reduced of materials compared to solid RC pier. However, the hollow RC pier shows a low ductile behavior due to brittle failure of inside concrete. To overcome this problem, the internally confined hollow reinforced concrete column has been developed. In this study, the behavior of internally confined hollow RC piers were evaluated with safety ratio, ductility, total material cost, the total weight of the pier, etc. The chosen parameters for the study are hollow ratio, thickness of internal steel tube, intervals between vertical re-bars, numbers of horizontal re-bars, and strength of concrete.

  • PDF

Experimental Research for Seismic Performance of Circular Hollow R.C. Bridge Pier (원형중공 콘크리트 교각의 내진성능에 대한 실험적 연구)

  • 한기훈;이강균;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.671-676
    • /
    • 1999
  • Because of relatively heavy dead weight of concrete itself and unavoidable heat of massive concrete in bridge piers, circular hollow columns are widely used in Korean highway bridges. Since the occurrence of 1995 Kobe earthquake, there have been much concerns about seismic design for various infrastructures, inclusive of bridge structures. It is, however, understood that there are not much research works for nonlinear behavior of circular hollow columns subjected to earthquake motions. The ultimate of this experimental research is investigate nonlinear behavior of circular hollow reinforced concrete bridge piers under the quasi-static cyclic load, and then to enhance their ductility by strengthening the plastic hinge region with glassfiber sheets. It is concluded from quasi-static tests for 7 bridge piers that energy dissipation capacity and curvatures for a given displacement ductility factor $\{\mu}=frac{\Delta}{\Delta_y}$are about 20% higher for the seismically designed columns and about 70% higher for the retrofitted piers than the nonseismically designed columns in a conventional way.

  • PDF

Research of Plastic response by Quasi-Static Test for Circulr Hollow R.C. Bridge Pier (준정적 실험에 의한 중공원형 콘크리트 교각의 소성응답 연구)

  • 정영수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.247-255
    • /
    • 1999
  • Because of relatively heavy dead weight of concrete itself and unavoidable heat of massive concrete in bridge piers circular hollow columns are widely used in Korean highway bridges Since the occurrence of 1995 Kobe earthquake there have been much concern about seismic design for various infrastructures inclusive of bridge structures. It is however understood that there are not much research works for nonlinear behavior circular hollow columns subjected to earthquake motions. The ultimate of this experimental research is to investigate nonlinear behavior of hollow reinforced concrete bridge piers under the quasi-static cyclic load test and than to enhance their ductility by strengthening the plastic hinge region with glassfiber sheets. It can be concluded from Quasi-static test for 7 bridge piers that approximate 4-5 ductility factor can be experimentally obtained for bridge piers nonseismically designed in conventional way which approximate 5-6 ductility factor for those seismically designed.

  • PDF

Ductility performance of hollow-section reinforced concrete piers using high-strength reinforcing bars (중공단면 고강도 철근 콘크리트 교각의 연성거동에 관한 실험적 연구)

  • Oh Byung Hwan;Park Dae Gyun;Cho Keun Ho;Shin Yong Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.730-733
    • /
    • 2004
  • Three Hollow RC piers were tested under a constant axial load and a cyclically reversed horizontal loadto investigate the structural behavior of hollow RC piers using the high strength concrete and the high strength rebars. The test variables include concrete compressive strength, steel strength, and steel ratio. The test results indicate that RC piers using the high strength concrete and high strength rebars exhibit ductile behavior and appropriate seismic performance, in compliance with the design code. The present study allows more realistic application of high strength rebars and concrete to RC piers, which will provide enhanced durability as well as more economy.

  • PDF

New Hollow RC Bridge Piers with Triangular Reinforcement Details (삼각망 철근상세를 갖는 새로운 중공 철근콘크리트 교각)

  • Kim, Tae-Hoon;Kim, Ho-Young;Lee, Jae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.21-31
    • /
    • 2016
  • This study investigates the seismic performance of new hollow reinforced concrete (RC) bridge piers with triangular reinforcement details. The developed triangular reinforcement details are economically feasible and rational, and facilitate shorter construction periods. We tested a model of new hollow RC bridge piers with triangular reinforcement details under a constant axial load and a quasi-static, cyclically reversed horizontal load. We used a computer program, Reinforced Concrete Analysis in Higher Evaluation System Technology (RCAHEST), for analysis of RC structures. The used numerical method gives a realistic prediction of seismic performance throughout the loading cycles for several hollow pier specimens investigated. As a result, developed triangular reinforcement details for material quantity reduction was equal to existing reinforcement details in terms of required performance.

Experimental and numerical studies on the cyclic behavior of R/C hollow bridge piers with corroded rebars

  • Cardone, D.;Perrone, G.;Sofia, S.
    • Earthquakes and Structures
    • /
    • v.4 no.1
    • /
    • pp.41-62
    • /
    • 2013
  • A comprehensive experimental program of cyclic tests on 1:3-scale models of bridge piers is going to be carried out at the Laboratory of Structures and Materials of the University of Basilicata. The testing models include eight RC single shaft piers with hollow circular cross section. Four piers have been realised using corroded steel rebars. In this paper, the results of preliminary numerical simulation analyses of the cyclic behaviour of the piers, carried out with Opensees using fiber-based models, are presented. Pull-out and lap-splice effects of steel rebars have been taken into account in the numerical analyses. First, the experimental specimens and the test set up are presented. Next, the results of the numerical analyses are discussed. In the numerical analyses, different configurations and levels of corrosion have been considered. The effective stiffness and equivalent damping of the piers is reported as a function of pier ductility and pier drift.

Analytical Study on Hollow Reinforced Concrete Bridge Piers under Varying Axial Load (변동 축하중을 받는 중공 철근콘크리트 교각에 관한 해석적 연구)

  • Kim, Tae-Hoon;Kim, Young-Jin;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.81-84
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of hollow reinforced concrete bridge piers under varying axial load. The role of the variable axial load is very important in the ductility, strength, stiffness, and energy dissipation. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The proposed numerical method for the inelastic behavior of hollow reinforced concrete bridge piers under varying axial load is verified by comparison with reliable experimental results.

  • PDF

A Parametric Study on Seismic Performance of Internally Confined Hollow RC Columns (내부 구속 중공 RC 기둥의 내진성능에 관한 매개 변수 연구)

  • Won, Deok-Hee;Han, Taek-Hee;Kim, Jung-Hun;Choi, Jun-Ho;Kang, Young-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.28-35
    • /
    • 2012
  • Recently, there is to increase interest in seismic performance of piers. Hollow section is applied to increasing the seismic performance of piers. However, hollow RC pier becomes the biaixial confining state because hollow part is not confined. The pier is developed brittle failure from inner face in hollow part. A tube is inserted in hollow part to become the weakness. This is ICH RC(Internally Confined Hollow RC) pier. This pier is enhanced stiffness, strength, and ductility by core concrete has triaxial confining stress. In this paper is researched about parameters effect the seismic performance. Parameters are hollow ratio, transverse reinforcement, longitudinal reinforcement, and concrete strength.

A Study on the Moment-Curvature Relation of Hollow RC piers considering Tension Stiffening Effect (인장강성효과를 고려한 중공단면 교각의 모멘트-곡률 관계에 대한 연구)

  • Park Young Ho;Kim Se Hun;Choi Seung Won;Oh Byung Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.17-20
    • /
    • 2005
  • Moment-curvature relation of RC pier is influenced greatly in occurrence form of crack and difference is happened according to consideration existence and nonexistence of tension stiffening effect. However, studies considering these is very insufficient misgovernment. Also, it is sometimes unavoidable lap splice of axial reinforcement in plastic hinge region of RC piers. However, specific design standard about lap splice of axial reinforcement is unprepared real condition and study about effect that lap splice of axial reinforcement get in occurrence form of crack is insufficient misgovernment. Therefore, in this paper, experiments are performed with hollow RC piers that do lap splice of axial reinforcement by main variable. And this study present analytical method about moment-curvature relation of hollow RC pier that consider tension stiffening effect and analyze effect that lap splice of axial reinforcement gets in occurrence form of crack. Analytic method of moment-curvature relation of RC pier that present in this study shows very similar motion with experiment result and crack interval of RC pier is suffering dominate impact in the augmented reinforcement amount by lap splice and average crack interval decreases as lap splice ratio increases.

  • PDF

A parametric study of optimum tall piers for railway bridge viaducts

  • Martinez-Martin, Francisco J.;Gonzalez-Vidosa, Fernando;Hospitaler, Antonio;Yepes, Victor
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.723-740
    • /
    • 2013
  • This paper presents a parametric study of reinforced concrete bridge tall piers with hollow, rectangular sections. Such piers are typically used in railway construction of prestressed concrete viaducts. Twenty one different piers have been studied with seven column heights of 40, 50, 60, 70, 80, 90 and 100 m and three types of 10-span continuous viaducts, whose main span lengths are 40, 50 and 60 m. The piers studied are intermediate columns placed in the middle of the viaducts. The total number of optimization design variables varies from 139 for piers with column height of 40 m to 307 for piers with column height of 100 m. Further, the results presented are of much value for the preliminary design of the piers of prestressed concrete viaducts of high speed railway lines.