• Title/Summary/Keyword: Hollow concrete filled steel tube pile

Search Result 4, Processing Time 0.018 seconds

Analysis on Flexural Behavior of Hollow Prestressed Concrete Filled Steel Tube Piles (프리스트레스를 받는 중공형 콘크리트 충전 강관말뚝의 휨거동 해석)

  • Chung, Heung-Jin;Paik, Kyu-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.133-140
    • /
    • 2018
  • A nonlinear finite element analysis was conducted in order to examine the moment capacity and flexural behaviour of hollow prestressed concrete filled steel tube(HCFT) piles which compose hollow PHC piles inside thin wall steel tubes. The parameters investigated in this study were various contact conditions between concrete and steel tube, thickness of concrete tube and various PC strands. A simple method is proposed to determine the ultimate flexural strength based on plastic stress distribution method. In order to verify the proposed method, calculated moment capacity of various HCFT piles are compared with the experiment and numerical analysis results.

An Evaluation of Flexural Strength of Hollow Concrete Filled FRP Tube Piles (중공형 콘크리트 충전 FRP Tube 말뚝의 휨강도 산정)

  • Kim, Hyung-Joon;Chung, Heung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.204-211
    • /
    • 2022
  • In this study, Hollow Concrete Filled FRP Tube Pile(HCFFT Pile) was proposed as a model to utilize the advantages of composite piles and solve the problem of corrosion, which is a disadvantage of CFT piles, and a numerical analysis model was developed to analyze their behavior. The strain compatibility method was applied considering the damage plastic behavior of concrete, the yield plastic behavior of steel, and the elastic behavior of FRP. The flexural strength calculation equation of HCFFT piles was proposed considering the change of the FRP tube section according to the distance from the neutral axis. The flexural strength calculation equation, numerical analysis results, and experimental results were compared and analyzed to verify their adequacy. The results of this study can be used as basic data for the optimal design of various HCFFT piles using FRP.

Strength Characteristics of Hollow Prestressed Concrete Filled Steel Tube Piles for Hybrid Composite Piles (복합말뚝용 중공형 콘크리트 충전 강관말뚝의 강도 특성)

  • Paik, Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.1
    • /
    • pp.37-46
    • /
    • 2018
  • Hollow prestressed concrete filled steel tube (HCFT) piles, which compose hollow PHC piles inside thin wall steel tubes, are developed. In order to investigate the strength characteristics of HCFT piles, flexural and shear tests were conducted on HCFT piles as well as PHC and steel pipe piles with the same diameter. Results of the test program showed that the flexural strength of HCFT piles was 2.88 and 1.19 times those of ICP and steel pipe piles with thickness of 12 mm, respectively, and its shear strength was 2.40 times that of steel pipe piles. The shear key attached to the inside of thin wall steel tube did not affect the flexural behavior of HCFT piles. It was also observed that the flexural strengths of HCFT piles with diameters of 450 and 500 mm were 35 to 63% higher than the sum of the flexural strengths of its components, respectively, because the strength of concrete in compressive zone increased by confining effect of thin wall steel tube on concrete. HCFT piles used as upper piles in hybrid composite piles might decrease the lateral displacement and increase the structural safety of structures subjected to lateral loads.

Estimation of Flexural Strength of Hollow Prestressed Concrete Filled Steel Tube Piles (긴장력이 도입된 중공형 콘크리트 충전 강관말뚝의 휨강도 산정)

  • Paik, Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.91-100
    • /
    • 2019
  • Hollow prestressed concrete-filled steel tube (HCFT) piles, which combines PHC piles inside thin-wall steel tubes, were developed to increase the flexural strength of the pile with respect to the lateral load. Since P-M curves are needed for evaluating the structural safety of piles when applying HCFT piles to fields, equations for plotting P-M curves of HCFT piles in limit states were proposed. When the yield strength is applied to the steel tube and PC steel bar of HCFT piles, the proposed equations significantly underestimated the flexural strength of HCFT piles. Unlike the flexural strength test results, the proposed equations also provide greater flexural strengths for 12 mm thick steel pipe piles with the same diameter than for HCFT piles. However, when the ultimate strengths are used instead of the yield strengths for the steel tube and PC steel bar, the proposed equations provide the flexural strengths very close to the flexural strength test results.